AI Article Synopsis

  • ETV4 is found to be significantly up-regulated in cholangiocarcinoma (CCA) and correlates with worse patient outcomes.
  • Elevated levels of ETV4 promote growth, migration, invasion, and glycolysis in CCA cells, while reducing ETV4 expression has the opposite effects.
  • ETV4 activates the TGF-β/Smad2/3 signaling pathway, suggesting that targeting ETV4 could be a potential strategy for managing CCA progression.

Article Abstract

Background: Considerable studies show that ETS variant 4 (ETV4) plays an important roles in multitudinous tumor. This study investigated its function in cholangiocarcinoma (CCA) progression and revealed the underlying mechanisms.

Methods: The expression of ETV4 in CCA was evaluated using TCGA database and the single-cell analysis based on GSE189903 dataset. ETV4 expression in CCA human specimens was detected by reverse transcription-quantitative PCR, immunohistochemistry, and western blot. Cell Counting Kit-8, EdU, colony formation, wound healing, and Transwell assays were used to analyze the effects of ETV4. Extracellular acidification rate, oxygen consumption rate, glucose uptake, and lactate production were used to measure glycolysis in CAA cells. Western blot was performed to explore glycolysis-related proteins. Tumor growth was evaluated in mice xenograft tumors.

Results: ETV4 was up-regulated in CCA epithelial cells. The high-expression of ETV4 was associated with poor prognosis of patients with CCA. ETV4 overexpression enhanced the proliferation, migration, invasion, and glycolysis of CCA cells; ETV4 silencing led to the contrary effects. Mechanistically, ETV4 activates TGF-β/Smad2/3 signaling pathway. In mice xenograft mode, ETV4 silencing inhibits the tumor growth, the expression of glycolysis-related proteins and TGF-β/Smad2/3 pathway proteins.

Conclusions: ETV4 functions as an essential factor in the roles of TGF-β1 in CCA cells, and may be a promising target for TGF-β1-mediated CCA progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225894PMC
http://dx.doi.org/10.1016/j.tranon.2024.102035DOI Listing

Publication Analysis

Top Keywords

etv4
12
cca
8
cca progression
8
western blot
8
glycolysis-related proteins
8
tumor growth
8
mice xenograft
8
cca cells
8
etv4 silencing
8
etv4 promotes
4

Similar Publications

Polyomavirus enhancer activator 3 (PEA3), an ETS transcription factor, has been documented to regulate the development and metastasis of human cancers. Nonetheless, a thorough analysis examining the relationship between the PEA3 subfamily members and tumour development, prognosis, and the tumour microenvironment (TME) across various cancer types has not yet been conducted. The expression profiles and prognostic significance of the PEA3 subfamily were evaluated using data from the GEO, TCGA, and PrognoScan databases, in conjunction with COX regression analyses and the Kaplan-Meier Plotter.

View Article and Find Full Text PDF

Upregulation of haematopoetic cell kinase (Hck) activity by a secreted parasite effector protein (Ta9) drives proliferation of Theileria annulata-transformed leukocytes.

Microb Pathog

December 2024

Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany; Freie Universität Berlin, Veterinary Centre for Resistance Research, Berlin, Germany. Electronic address:

Reversible transformation of bovine leukocytes by the intracellular parasites Theileria annulata and Theileria parva is central to pathogenesis of the diseases they cause, tropical theileriosis and East Coast Fever, respectively. Parasite-dependent constitutive activation of major host transcription factors such as AP-1 (Activating Protein 1) and NF-κB (Nuclear Factor-Kappa B) sustains the transformed state. Although parasite interaction with host cell signaling pathways upstream of AP-1 have been studied, the precise contribution of Theileria encoded factors capable of modulating AP-1 transcriptional activity, and other infection-altered signaling pathways is not fully understood.

View Article and Find Full Text PDF

Sox17 and Erg synergistically activate endothelial cell fate in reprogramming fibroblasts.

J Mol Cell Cardiol

December 2024

The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

Sox17-Erg direct reprogramming is a potent tool for the in vitro and in vivo generation of arterial-like induced-endothelial cells from fibroblasts. In this study, we illustrate the pioneering roles of both Sox17 and Erg in the endothelial cell reprogramming process and demonstrate that emergent gene expression only occurs when both factors are co-expressed. Bioinformatic analyses and molecular validation reveal both Bach2 and Etv4 as integral mediators of Sox17-Erg reprogramming with different roles in lung and heart fibroblast reprogramming.

View Article and Find Full Text PDF

Identification and validation of a prognostic risk model based on radiosensitivity-related genes in nasopharyngeal carcinoma.

Transl Oncol

December 2024

Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China. Electronic address:

Background: Despite advancements with intensity-modulated radiation therapy (IMRT), about 10 % of nasopharyngeal carcinoma (NPC) patients remain resistant to radiotherapy, leading to recurrence and poor prognosis. This study aims to identify radiosensitivity-related genes in NPC and develop a prognostic model to predict patient outcomes.

Methods: We analyzed 179 NPC samples from Fujian Cancer Hospital using RNA sequencing.

View Article and Find Full Text PDF

Background: M2 macrophage-derived exosomes have been identified to modulate hepatocellular carcinoma (HCC) progression. E-twenty-six (ETS) variant transcription factor 4 (ETV4) shows protumoral effects in HCC. Here, we aimed to probe whether ETV4 performed oncogenic effects on HCC by macrophage-derived exosomes and its associated mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!