With the gradual depletion of natural gold ore, waste printed circuit boards (WPCBs) have become one of the most attractive alternatives to gold ore. Here, a series of quaternary phosphonium adsorbents with a large size were successfully synthesized by adjusting the number of functional groups and carbon chain length of functional monomers, which can be used for selective recovery of gold(III) from WPCBs leaching solution. The quaternary phosphonium adsorbent (PS-TEP) prepared by the nucleophilic substitution reaction between triethyl phosphine with the smallest volume and chloromethylated polystyrene (PS-Cl) exhibited the best gold loading capacity (617.90 mg g). The adsorption mechanism of gold(III) on PS-TEP surface mainly involves anion exchange between AuCl and Cl in the adsorbent. The charge level of the H atom closest to -CH-P group directly determines the strength of the interaction between the adsorbent and the gold ion. Multiwfn and VMD programs visually confirm the weak interaction between PS-TEP and AuCl. After 5 adsorption-stripping cycles, the adsorption rate of gold(III) in solution remained at about 99 %. In addition, PS-TEP exhibited good gold(III) selectivity in both simulated and actual WPCBs gold leaching solutions. These results indicate that the large-particle PS-TEP with high capacity is suitable for selective gold recovery from WPCBs leaching solution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.134881DOI Listing

Publication Analysis

Top Keywords

quaternary phosphonium
12
selective recovery
8
phosphonium adsorbent
8
synthesized adjusting
8
gold ore
8
wpcbs leaching
8
leaching solution
8
gold
6
wpcbs
5
ps-tep
5

Similar Publications

This study focuses on two types of phosphonium cation-based ionic liquids (P-ILs) with different alkyl chains: triethylalkylphosphonium (P222R) and tributylalkylphosphonium (P444R) cations. Broadband dielectric spectroscopy showed that the translational motion of the ions accelerated with an increasing number of alkyl chains by coupling with their rotational motion in both P-ILs. Raman spectroscopy revealed that P222R cations, despite dielectric similarities to P444R cations, can form all-trans conformations and cation-rich nanodomains because they have a relatively polar, short alkyl chain moiety with a central P atom and less-polar alkyl chains than those of P444R cations.

View Article and Find Full Text PDF

(1) Background: Since the discovery of antibiotics in the first half of the 20th century, humans have abused this privilege, giving rise to antibiotic-resistant pathogens. Recent research has brought to light the use of antimicrobial peptides in polymers, hydrogels, and nanoparticles (NPs) as a newer and safer alternative to traditional antibiotics. (2) Methods: This review article is a synthesis of the scientific works published in the last 15 years, focusing on the synthesis of polymers with proven antimicrobial properties.

View Article and Find Full Text PDF

Pd/Cu Catalyzed Asymmetric Allylation for Stereodivergent Synthesis of Glutamic Acid Derivatives.

Chemistry

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.

A synergistic Pd/Cu catalyst system has been developed for stereodivergent transformation of Morita-Baylis-Hillman (MBH) carbonates and Schiff bases derived from simple amino acids to afford a series of optically active β-branched γ-methyleneglutamic acid derivatives with adjacent tertiary/tertiary and quaternary/tertiary stereocenters in high yields (up to 96 %) with excellent diastereo- and enantioselectivities (>20/1 dr and >99 % ee in most cases) under mild conditions. The use of SKP ligand is disclosed to be crucial for the success of the transformation, and in particular allowing the reaction to proceed at low catalyst loading (0.02 mol % for Pd and 0.

View Article and Find Full Text PDF

Anticancer activity of salinomycin quaternary phosphonium salts.

Eur J Med Chem

January 2025

Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland. Electronic address:

In recent years salinomycin has emerged as a promising anticancer drug. Many literature reports have proved its remarkable antiproliferative activity. Moreover, chemical modifications of salinomycin lead to analogues with even higher cytotoxicity against cancer cell lines and a better selectivity index for malignant cells than those of the unmodified compound or a standard anticancer drug such as doxorubicin.

View Article and Find Full Text PDF

Freestanding Phosphonium Covalent Organic Frameworks with Efficient Hydroxide Conduction for Zinc-Air Batteries.

Angew Chem Int Ed Engl

November 2024

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China.

Owing to their well-defined crystalline pore structures and ordered functional ionic groups along the skeleton, ionic covalent organic frameworks (iCOFs) exhibit excellent performance and have significant potential for use in energy storage and conversion devices. Herein, we for the first time developed cationic phosphonium COFs with high hydroxide conduction even with low ion exchange capacity (IEC). Specifically, we synthesized COFs containing quaternary phosphonium groups as excellent ion transport moieties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!