Novel portable diffuse optical tomography (DOT) devices for breast cancer lesions hold great promise for non-invasive, non-ionizing breast cancer screening. Critical to this capability is not just the identification of lesions but rather the complex problem of discriminating between malignant and benign lesions. To accurately reconstruct the highly heterogeneous tissue of a cancer lesion in healthy breast tissue using DOT, multiple wavelengths can be leveraged to maximize signal penetration while minimizing sensitivity to noise. However, these wavelength responses can overlap, capture common information, and correlate, potentially confounding reconstruction and downstream end tasks. We show that an orthogonal fusion loss regularizes multi-wavelength DOT leading to improved reconstruction and accuracy of end-to-end discrimination of malignant versus benign lesions. We further show that our raw-to-task model significantly reduces computational complexity without sacrificing accuracy, making it ideal for real-time throughput, desired in medical settings where handheld devices have severely restricted power budgets. Furthermore, our results indicate that image reconstruction is not necessary for unbiased classification of lesions with a balanced accuracy of 77% and 66% on the synthetic dataset and clinical dataset, respectively, using the raw-to-task model. Code is available at https://github.com/sfu-mial/FuseNet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.108676 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!