A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Iron-Catalyzed Asymmetric Imidation of Sulfides via Sterically Biased Nitrene Transfer. | LitMetric

Iron-Catalyzed Asymmetric Imidation of Sulfides via Sterically Biased Nitrene Transfer.

J Am Chem Soc

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.

Published: July 2024

Transition-metal-catalyzed enantioselective nitrene transfer to sulfides has emerged as one of the most powerful strategies for rapid construction of enantioenriched sulfimides. However, achieving stereocontrol over highly active earth-abundant transition-metal nitrenoid intermediates remains a formidable challenge compared with precious metals. Herein, we disclose a chiral iron(II)/,'-dioxide-catalyzed enantioselective imidation of dialkyl and alkyl aryl sulfides using iminoiodinanes as nitrene precursors. A series of chiral sulfimides were obtained in moderate-to-good yields with high enantioselectivities (56 examples, up to 99% yield, 98:2 e.r.). The utility of this methodology was demonstrated by late-stage modification of complex molecules and synthesis of the chiral insecticide sulfoxaflor and the intermediates of related bioactive compounds. Based on experimental studies and theoretical calculations, a water-bonded high-spin iron nitrenoid species was identified as the key intermediate. The observed stereoselectivity was original from the steric repulsion between the amide unit of the ligand in the chiral cave and the bulky substituent of sulfides. Additionally, dioxazolones proved to be suitable acylnitrene precursors in the presence of an iron(III)/,'-dioxide complex, resulting in the formation of enantioselectivity-reversed sulfimides (14 examples, up to 81% yield, 97:3 e.r.).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c04855DOI Listing

Publication Analysis

Top Keywords

nitrene transfer
8
iron-catalyzed asymmetric
4
asymmetric imidation
4
sulfides
4
imidation sulfides
4
sulfides sterically
4
sterically biased
4
biased nitrene
4
transfer transition-metal-catalyzed
4
transition-metal-catalyzed enantioselective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!