Unravelling bacterial virulence factors in yeast: From identification to the elucidation of their mechanisms of action.

Arch Microbiol

Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia.

Published: June 2024

Pathogenic bacteria employ virulence factors (VF) to establish infection and cause disease in their host. Yeasts, Saccharomyces cerevisiae and Saccharomyces pombe, are useful model organisms to study the functions of bacterial VFs and their interaction with targeted cellular processes because yeast processes and organelle structures are highly conserved and similar to higher eukaryotes. In this review, we describe the principles and applications of the yeast model for the identification and functional characterisation of bacterial VFs to investigate bacterial pathogenesis. The growth inhibition phenotype caused by the heterologous expression of bacterial VFs in yeast is commonly used to identify candidate VFs. Then, subcellular localisation patterns of bacterial VFs can provide further clues about their target molecules and functions during infection. Yeast knockout and overexpression libraries are also used to investigate VF interactions with conserved eukaryotic cell structures (e.g., cytoskeleton and plasma membrane), and cellular processes (e.g., vesicle trafficking, signalling pathways, and programmed cell death). In addition, the yeast growth inhibition phenotype is also useful for screening new drug leads that target and inhibit bacterial VFs. This review provides an updated overview of new tools, principles and applications to study bacterial VFs in yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-024-04023-2DOI Listing

Publication Analysis

Top Keywords

bacterial vfs
24
virulence factors
8
cellular processes
8
principles applications
8
growth inhibition
8
inhibition phenotype
8
vfs yeast
8
yeast
7
bacterial
7
vfs
7

Similar Publications

Understanding the community structure of the lower respiratory tract microbiome is crucial for elucidating its roles in respiratory tract diseases. However, there are few studies about this topic due to the difficulty in obtaining microbial samples from both healthy and disease individuals. Here, using 744 high-depth metagenomic sequencing data of lower respiratory tract microbial samples from 675 well-phenotyped pigs, we constructed a lung microbial gene catalog containing the largest scale of 10,031,593 nonredundant genes to date, 44.

View Article and Find Full Text PDF

Ammonia nitrogen affects bacterial virulence and conditional pathogenic bacterial growth by regulating biofilm microbial metabolism and EPS secretion in laboratory scale distribution systems.

Sci Total Environ

December 2024

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

The control of conditional pathogenic bacteria and inhibition of their virulence factors (VFs) in drinking water distribution systems (DWDSs) is vital for drinking water safety. This study adopted two groups of DWDSs to investigate how ammonia nitrogen affects bacterial VFs and conditional pathogenic bacterial growth in biofilms. Our results indicated that Acidimicrobium (95,916.

View Article and Find Full Text PDF

Unravelling a Latent Pathobiome Across Coral Reef Biotopes.

Environ Microbiol

December 2024

Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.

Previous studies on disease in coral reef organisms have neglected the natural distribution of potential pathogens and the genetic factors that underlie disease incidence. This study explores the intricate associations between hosts, microbial communities, putative pathogens, antibiotic resistance genes (ARGs) and virulence factors (VFs) across diverse coral reef biotopes. We observed a substantial compositional overlap of putative bacterial pathogens, VFs and ARGs across biotopes, consistent with the 'everything is everywhere, but the environment selects' hypothesis.

View Article and Find Full Text PDF

Identification of a genomic cluster related to hypersecretion of intestinal mucus and mucinolytic activity of atypical enteropathogenic (aEPEC).

Front Cell Infect Microbiol

December 2024

Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.

Enteropathogenic (EPEC) strains are subdivided into typical (tEPEC) and atypical (aEPEC) according to the presence or absence of a virulence-associated plasmid called pEAF. Our research group has previously demonstrated that two aEPEC strains, 0421-1 and 3991-1, induce an increase in mucus production in a rabbit ileal loop model . This phenomenon was not observed with a tEPEC prototype strain.

View Article and Find Full Text PDF

Characterization of pathogen distribution and pathogenicity from landfill site.

J Hazard Mater

November 2024

Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China. Electronic address:

Landfills serve as significant environmental reservoirs for pathogens. This study investigated the abundance, distribution characteristics, and influencing factors of pathogens both within the landfill and its surrounding environment. The results unveiled contamination by pathogens in the external atmosphere (5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!