A cobalt catalyst, under oxidative conditions, facilitates the single electron transfer process in -pyridyl arylacetamides to form α-carbon-centered radicals that readily react with molecular oxygen, giving access to mandelic acid derivatives. In contrast to the known benzylic hydroxylation approaches, this approach enables chemo- and regioselective hydroxylation at a benzylic position adjacent to (-pyridyl)amides. Mild conditions, broad scope, excellent selectivity, and wide synthetic practicality set up the merit of the reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.4c00708DOI Listing

Publication Analysis

Top Keywords

cobalt catalyzed
4
catalyzed α-hydroxylation
4
α-hydroxylation arylacetic
4
arylacetic acid
4
acid equivalents
4
equivalents dioxygen
4
dioxygen cobalt
4
cobalt catalyst
4
catalyst oxidative
4
oxidative conditions
4

Similar Publications

D-Histidine modulated chiral metal-organic frameworks for discriminating 3,4-Dihydroxyphenylalanine enantiomers based on a chemiluminescence quenching mode.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:

Background: Drug enantiomers often display distinguishable or even opposite pharmacological and toxicologic activities. Therefore it is of great necessity to discriminate enantiomers for guaranteeing safetyness and effectiveness of chiral drugs. Facile chiral discrimination has long been a noticeable challenge because of the minimal differences in physicochemical properties of enantiomers.

View Article and Find Full Text PDF

Applying hollow octahedron PtNPs/Pd-CuO nanozyme and highly conductive AuPtNPs/Ni-Co NCs to colorimetric -electrochemical dual-mode aptasensor for AFB1 detection.

Anal Chim Acta

February 2025

College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.

Background: Aflatoxin B1 (AFB1) is a secondary metabolite produced by Aspergillus flavus and Aspergillus parasiticus. This toxin is highly carcinogenic and toxic, posing a serious threat to human and animal health. AFB1 primarily enters the human body through contaminated food, particularly peanuts, corn, nuts, and wheat.

View Article and Find Full Text PDF

Herein we report a cobalt-catalyzed hydroglycosylation of terminal alkynes, employing bench-stable ortho-iodobiphenyl (oIB) substituted sulfides as glycosyl donors. This reaction occurs with high stereo- and regioselectivity to afford E-configured vinyl α-C-glycosides, a class of compounds nontrivial to access by previous methods. The use of a bis(oxazoline) ligand with bulky side chains is critical for the high selectivities observed.

View Article and Find Full Text PDF

Tunning valence state of cobalt centers in Cu/Co-CoO for significantly boosting water-gas shift reaction.

Nat Commun

January 2025

Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.

Dual active sites with synergistic valence state regulation under oxidizing and reducing conditions are essential for catalytic reactions with step-wise mechanisms to modulate the complex adsorption sites of reactant molecules on the surfaces of heterogeneous catalysts with maximized catalytic performances, but it has been rarely explored. In this work, uniformly dispersed CuCo alloy and CoO nanosheet composite catalysts with dual active sites are constructed, which shows huge boost in activity for catalyzing water-gas shift reaction (WGSR), with a record high reaction rate reaching 204.2 μmol g s at 300 °C for CuCoO amongst the reported Cu-based and Co-based catalysts.

View Article and Find Full Text PDF

Computational exploration of the electrochemical oxidation mechanism of thiocyanate catalyzed by cobalt-phthalocyanines.

Phys Chem Chem Phys

January 2025

Departamento de Química, Facultad de Ciencias, Universidad de Chile, P. O. Box 653, Las Palmeras 3425, Ñuñoa, Santiago, Chile.

In this study, we focused on the mechanism of the electrocatalytic oxidation of thiocyanate, which in traditional electrodes typically requires high overpotentials. As models for reducing these overpotentials and catalyzing the reaction, we used a set of modified cobalt phthalocyanines (CoPc), known as electrocatalysts. Using DFT calculations, we explored how modifications to CoPc by adding electron-donating and withdrawing groups and the coordination of 4-amino thiophenol impact the oxidation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!