His-Leu is a hydrolytic byproduct of angiotensin metabolism, whose concentration in the bloodstream could be at least micromolar. This encouraged us to investigate its Cu(II) binding properties and the concomitant redox reactivity. The Cu(II) binding constants were derived from isothermal titration calorimetry and potentiometry, while identities and structures of complexes were obtained from ultraviolet-visible, circular dichroism, and room-temperature electronic paramagnetic resonance spectroscopies. Four types of Cu(II)/His-Leu complexes were detected. The histamine-like complexes prevail at low pH. At neutral and mildly alkaline pH and low Cu(II):His-Leu ratios, they are superseded by diglycine-like complexes involving the deprotonated peptide nitrogen. At His-Leu:Cu(II) ratios of ≥2, bis-complexes are formed instead. Above pH 10.5, a diglycine-like complex containing the equatorially coordinated hydroxyl group predominates at all ratios tested. Cu(II)/His-Leu complexes are also strongly redox active, as demonstrated by voltammetric studies and the ascorbate oxidation assay. Finally, numeric competition simulations with human serum albumin, glycyl-histydyl-lysine, and histidine revealed that His-Leu might be a part of the low-molecular weight Cu(II) pool in blood if its abundance is >10 μM. These results yield further questions, such as the biological relevance of ternary complexes containing His-Leu.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220758 | PMC |
http://dx.doi.org/10.1021/acs.inorgchem.4c01640 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
Lithium-ion batteries (LIBs) have become advanced energy storage technologies; however, specific capacity remains limited by the active materials in cathodes. Here, we report Li-LiNO batteries (LNBs) where LiNO in electrolyte serves as both active materials and ion conductor at room temperature. LNBs operate on a highly reversible redox between NO and NO, which results in an impressive areal capacity of 19 mAh cm at a plateau voltage of 1.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.
The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Chemistry, Burke Laboratories, Dartmouth College, 41 College St., Hanover, New Hampshire 03755, United States.
This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SA = 6.
View Article and Find Full Text PDFChem Asian J
January 2025
Indian Institute of Technology Guwahati, Department of Chemistry, Department of Chemistry, 781039, Guwahati, INDIA.
Fulfilment of energy demand by utilizing renewable energy sources that do not contribute to the production of greenhouse gases is a step forward in mitigating global warming. However, with the energy sources being intermittent in nature, renewable energy needs to be stored effectively on a grid scale. In this context, the development of redox-flow batteries has emerged as a promising technology where charging and discharging processes are accomplished by the redox shuttling of the electrolytes, namely anolytes and catholytes.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
Electron donor tetrathiafulvalene (TTF) and electron acceptor naphthalene diimide (NDI) derivatives were used to synthesize a 3D Zn-TTF/NDI-MOF. Multiple redox active sites and charge transfer endow the pristine MOF anode with excellent rate behavior and long term cycling performance (with an average specific capacity of 956 mA h g at 1 A g over 600 cycles). This study highlights the great potential of elaborately-designed MOFs for developing efficient anode materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!