We demonstrate that the mode number of Andreev bound states in bilayer graphene Josephson junctions can be modulated by controlling the superconducting coherence length in situ. By exploiting the quadratic band dispersion of bilayer graphene, we control the Fermi velocity and thus the coherence length via the application of electrostatic gating. Tunneling spectroscopy of the Andreev bound states reveals a crossover from short to long Josephson junction regimes as we approach the charge neutral point of the bilayer graphene. Furthermore, analysis of different mode numbers of the Andreev energy spectrum allows us to estimate the phase-dependent Josephson current quantitatively. Our Letter provides a new way for studying multimode Andreev levels by tuning the Fermi velocity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.226301 | DOI Listing |
Nat Nanotechnol
January 2025
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.
View Article and Find Full Text PDFNature
January 2025
Institut für Organische Chemie, Universität Würzburg, Würzburg, Germany.
Graphene is a single-layered sp-hybridized carbon allotrope, which is impermeable to all atomic entities other than hydrogen. The introduction of defects allows selective gas permeation; efforts have been made to control the size of these defects for higher selectivity. Permeation of entities other than gases, such as ions, is of fundamental scientific interest because of its potential application in desalination, detection and purification.
View Article and Find Full Text PDFNano Lett
January 2025
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.
Electro-optic (EO) modulation is a critical device action in photonics. Recently, the non-Drude dynamics induced by the Berry curvature dipole (BCD) in metals have attracted attention as a potential candidate for terahertz EO modulation. However, such BCD-induced EO effects can be challenging to realize, often requiring flat bands and complex materials such as a strained magic-angle twisted bilayer graphene on hexagonal boron nitride.
View Article and Find Full Text PDFiScience
January 2025
School of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou, P.R. China.
A possibility of unprecedented architecture may be opened up by combining both vertical and in-plane heterostructures. It is fascinating to discover that the interlayer stress transfer, interlayer binding energy, and interlayer shear stress of bi-layer Gr/hBN with CNTs heterostructures greatly increase (more than 2 times) with increase the numbers of CNTs and both saturate at the numbers of CNTs = 3, but it causes only 10.92% decrease in failure strain.
View Article and Find Full Text PDFACS Nano
January 2025
Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, School of Physics, Advanced Research Institute of Multidisciplinary Science, and School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
Two-dimensional in-plane transition-metal dichalcogenide (TMD) junctions have a range of potential applications in next-generation electronic devices. However, limited by the difficulties in ion implantation on 2D systems, the fabrication of the in-plane TMD junctions still relies on the lateral epitaxy of different materials, which always induces lattice mismatch and interfacial scattering. Here, we report the in-plane TMD junction formed with monolayer (ML) PtTe at the boundary of ML and bilayer graphene on SiC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!