Most of the elderly population is afflicted by periodontal diseases, creating a health burden worldwide. Cellular senescence is one of the hallmarks of aging and associated with several chronic comorbidities. Senescent cells produce a variety of deleterious secretions, collectively termed the (SASP). This disrupts neighboring cells, leading to further senescence propagation and inciting chronic inflammation, known as "inflammaging." Detrimental repercussions within the tissue microenvironment can trigger senescence at a younger age, accelerate biological aging, and drive the initiation or progression of diseases. Here, we investigated the biological signatures of senescence in healthy and diseased gingival tissues by assessing the levels of key senescence markers (p16, lipofuscin, and β-galactosidase) and inflammatory mediators (interleukin [IL]-1β, IL-6, IL-8, matrix metalloproteinase [MMP]-1, MMP-3, and tumor necrosis factor-α). Our results showed significantly increased senescence features including p16, lipofuscin, and β-galactosidase in both epithelial and connective tissues of periodontitis patients compared with healthy sites in all age groups, indicating that an inflammatory microenvironment can trigger senescence-like alterations in younger diseased gingival tissues as well. Subsequent analyses using double staining with specific cell markers noted the enrichment of β-galactosidase in fibroblasts and macrophages. Concurrently, inflammatory mediators consistent with SASP were increased in the gingival biopsies obtained from periodontitis lesions. Together, our findings provide the first clinical report revealing susceptibility to elevated senescence and inflammatory milieu consistent with senescence secretome in gingival tissues, thus introducing senescence as one of the drivers of pathological events in the oral mucosa and a novel strategy for targeted interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308264 | PMC |
http://dx.doi.org/10.1177/00220345241255325 | DOI Listing |
Background: Treatment of gingival recessions through surgical approaches is a common periodontal intervention. There is a rise in using biologics in root coverage procedures. As it has been shown that hyaluronic acid (HA) promotes wound healing, this review aimed to assess its efficacy in the treatment of gingival recessions.
View Article and Find Full Text PDFSci Rep
January 2025
Jinzhou Medical University School of Stomatology, Liaoning, People's Republic of China.
Objective of this study was to examine the clinical efficacy and mechanical characteristics of the modified titanium post in the restoration of subgingival defect teeth. Teeth with subgingival defects depth ≥ 2 mm were randomly restored using a fiber post after crown lengthening and a modified titanium post, respectively. Gingival index, sulcus bleeding index, probing depth, tooth mobility, and gingival papilla height were recorded before and after restoration.
View Article and Find Full Text PDFJ Periodontal Res
January 2025
Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA.
Aim: To assess tissue perfusion changes and wound healing biomarker levels after root coverage procedures with coronally advanced flap in combination with the cross-linked xenogeneic collagen matrix (CCMX), loaded either with a placebo or recombinant human platelet-derived growth factor-BB (rhPDGF).
Methods: This study was designed as a secondary analysis from a previously published clinical trial, and it assessed the tissue perfusion changes over 6 months around multiple gingival recession defects, treated with either with CCMX alone (control) or with CCMX + rhPDGF (test). High frequency Doppler ultrasonography (HFUS) scans were obtained at sites of interest at baseline, 2 weeks, 3 months, and 6 months after surgery.
Hua Xi Kou Qiang Yi Xue Za Zhi
February 2025
Dept. of Periodontics, Nanjing Stomatological Hospital, Affiliated Hosptital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China.
Peri-implantitis is a pathologic condition associated with dental plaque that occurs in the implant tissue and is characterized by inflammation of the mucous membrane surrounding the implant, followed by the progressive loss of supporting bone. In this study, a case of guided bone regeneration therapy based on plaque control of peri-implant inflammation was reported. Four years after surgery for the left second premolar implant, the patient presented with "left lower posterior tooth swelling and discomfort for more than 2 years".
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Periodontology, School and Hospital of Stomotology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China.
The combination of hydrophilic arginine residues and hydrophobic tryptophan residues is considered to be the first choice for designing short-chain antimicrobial peptides (AMPs) due to their potent antibacterial activity. Based on this, we designed an arginine- and tryptophan-rich short peptide, VR-12. Peri-implantitis is a significant microbial inflammatory disorder characterized by the inflammation of the soft tissues surrounding an implant, which ultimately leads to the progressive resorption of the alveolar bone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!