Graphitic carbon nitride (g-CN) is a widely studied visible-light-active photocatalyst for low cost, non-toxicity, and facile synthesis. Nonetheless, its photocatalytic efficiency is below par, due to fast recombination of charge carriers, low surface area, and insufficient visible light absorption. Thus, the research on the modification of g-CN targeting at enhanced photocatalytic performance has attracted extensive interest. A considerable amount of review articles have been published on the modification of g-CN for applications. However, limited effort has been specially contributed to providing an overview and comparison on available modification strategies for improved photocatalytic activity of g-CN-based catalysts in antibiotics removal. There has been no attempt on the comparison of photocatalytic performances in antibiotics removal between modified g-CN and other known catalysts. To address these, our study reviewed strategies that have been reported to modify g-CN, including metal/non-metal doping, defect tuning, structural engineering, heterostructure formation, etc. as well as compared their performances for antibiotics removal. The heterostructure formation was the most widely studied and promising route to modify g-CN with superior activity. As compared to other known photocatalysts, the heterojunction g-CN showed competitive performances in degradation of selected antibiotics. Related mechanisms were discussed, and finally, we revealed current challenges in practical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2024.166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!