A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of body weight on the knee joint biomechanics based on subject-specific finite element-musculoskeletal approach. | LitMetric

Knee osteoarthritis (OA) and obesity are major public health concerns that are closely intertwined. This intimate relationship was documented by considering obesity as the most significant preventable risk factor associated with knee OA. To date, however, the effects of obesity on the knee joint's passive-active structure and cartilage loading have been inconclusive. Hence, this study investigates the intricate relationship between obesity and knee OA, centering on the biomechanical changes in knee joint active and passive reactions during the stance phase of gait. Using a subject-specific musculoskeletal and finite element approach, muscle forces, ligament stresses, and articular cartilage contact stresses were analyzed among 60 individuals with different body mass indices (BMI) classified under healthy weight, overweight, and obese categories. Our predicted results showed that obesity significantly influenced knee joint mechanical reaction, increasing muscle activations, ligament loading, and articular cartilage contact stresses, particularly during key instances of the gait cycle-first and second peak loading instances. The study underscores the critical role of excessive body weight in exacerbating knee joint stress distribution and cartilage damage. Hence, the insights gained provide a valuable biomechanical perspective on the interaction between body weight and knee joint health, offering a clinical utility in assessing the risks associated with obesity and knee OA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178890PMC
http://dx.doi.org/10.1038/s41598-024-63745-xDOI Listing

Publication Analysis

Top Keywords

knee joint
20
body weight
12
obesity knee
12
knee
10
weight knee
8
articular cartilage
8
cartilage contact
8
contact stresses
8
obesity
6
joint
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!