Dirofilaria immitis is a mosquito-borne parasitic nematode that causes fatal heartworm disease in canids. The microfilariae are essential for research, including drug screening and mosquito-parasite interactions. However, no reliable methods for maintaining microfilaria long-term are currently available. Therefore, we used severe combined immunodeficiency (SCID) mice to develop a reliable method for maintaining D. immitis microfilaria. SCID mice were injected intravenously with microfilariae isolated from a D. immitis-infected dog. Microfilariae were detected in blood collected from the tail vein 218 days post-inoculation (dpi) and via cardiac puncture 296 dpi. Microfilariae maintained in and extracted from SCID mice showed infectivity and matured into third-stage larvae (L3s) in the vector mosquito Aedes aegypti. L3s can develop into the fourth stage larvae in vitro. Microfilariae from SCID mice respond normally to ivermectin in vitro. The microfilariae in SCID mice displayed periodicity in the peripheral circulation. The SCID mouse model aided in the separation of microfilariae from cryopreserved specimens. The use of SCID mice enabled the isolation and sustained cultivation of microfilariae from clinical samples. These findings highlight the usefulness of the SCID mouse model for studying D. immitis microfilaremia in canine heartworm research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178764PMC
http://dx.doi.org/10.1038/s41598-024-63165-xDOI Listing

Publication Analysis

Top Keywords

scid mice
24
microfilariae
8
scid
8
vitro microfilariae
8
microfilariae scid
8
scid mouse
8
mouse model
8
mice
6
development novel
4
novel rodent
4

Similar Publications

Chimeric antigen receptor T-cell (CAR-T) therapy has shown transformative potential in treating malignant tumours, with increasing global approval of CAR-T products. However, high-production costs and risks associated with viral vector-based CAR-T cells-such as insertional mutagenesis and secondary tumour formation-remain challenges. Our study introduces an innovative CAR-T engineering approach using mRNA delivered via lipid nanoparticles (LNPs), aiming to reduce costs and enhance safety while maintaining strong anti-tumour efficacy.

View Article and Find Full Text PDF

High-Throughput Dissociation and Orthotopic Implantation of Breast Cancer Patient-Derived Xenografts.

J Vis Exp

December 2024

Division of Exercise Physiology, Department of Health Professions, West Virginia University School of Medicine; Cancer Institute, West Virginia University School of Medicine; 3Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine;

Patient-derived xenografts (PDXs) provide a clinically relevant method for recapitulating tumor-involved cell types and the tumor microenvironment, which is essential for advancing knowledge of breast cancer (BC). Additionally, PDX models enable the study of BC systemic effects, which is not possible using in vitro models. Traditional methods for implanting BC xenografts typically involve anesthesia and sterile surgical procedures, which are time-consuming, invasive, and limit the scalability of PDX models in BC research.

View Article and Find Full Text PDF

Background And Study Aims: As a novel immunotherapy, chimeric antigen receptor T (CAR-T) cell technology is successful in treating hematologic malignancies, and exhibits potential benefits in partial solid tumors. Therapies targeting one antigen have some weaknesses, and dual-targeted CAR-T cells may be a better option. Alpha-fetoprotein (AFP) and glypican-3 (GPC3) are both highly expressed in hepatocellular carcinoma (HCC) and serve as important markers.

View Article and Find Full Text PDF

ErbB3 is markedly overexpressed in breast cancer cells and is associated with resistance and metastasis. Additionally, ErbB3 expression levels are positively correlated with low densities of tumor-infiltrating lymphocytes, a marker of poor prognosis. Consequently, ErbB3 is a promising therapeutic target for cancer immunotherapy.

View Article and Find Full Text PDF

Background/aim: Angiogenesis imaging has been a valuable complement to metabolic imaging with 2-deoxy-2-[F]fluoroglucose (FDG). In our longitudinal study, we investigated the tumour heterogeneity and the relationship between FDG and [Ga]Ga-NODAGA-c(RGDfK) (RGD) accumulation in breast cancer xenografts.

Materials And Methods: Two groups of cell lines, a fast-growing (4T1) and a slow-growing cell line (MDA-MB-HER2+), were inoculated into SCID mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!