Corrosion of electrocatalysts during electrochemical operations, such as low potential - high potential cyclic swapping, can cause significant performance degradation. However, the electrochemical corrosion dynamics, including structural changes, especially site and composition specific ones, and their correlation with electrochemical processes are hidden due to the insufficient spatial-temporal resolution characterization methods. Using electrochemical liquid cell transmission electron microscopy, we visualize the electrochemical corrosion of Pd@Pt core-shell octahedral nanoparticles towards a Pt nanoframe. The potential-dependent surface reconstruction during multiple continuous in-situ cyclic voltammetry with clear redox peaks is captured, revealing an etching and deposition process of Pd that results in internal Pd atoms being relocated to external surface, followed by subsequent preferential corrosion of Pt (111) terraces rather than the edges or corners, simultaneously capturing the structure evolution also allows to attribute the site-specific Pt and Pd atomic dynamics to individual oxidation and reduction events. This work provides profound insights into the surface reconstruction of nanoparticles during complex electrochemical processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178921 | PMC |
http://dx.doi.org/10.1038/s41467-024-49434-3 | DOI Listing |
Int J Biol Macromol
December 2024
Guangxi Colleges and Universities Key Laboratory of surface and interface electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guilin University of Technology, Guilin 541004, China. Electronic address:
With increasing awareness of environmental protection, additional attention has been given to environmentally friendly metal anticorrosion research. In this paper, the green organic corrosion inhibitor sodium lignosulfonate (SLS) was extracted from bagasse waste, and a Ce-MOF@SLS smart anticorrosive film containing the inhibitor was prepared on the surface of an aluminum alloy by in situ electrodeposition. The material was characterized by SEM, EDS, FT-IR, XRD and XPS, and its corrosion resistance was tested with EIS and neutral salt spray tests.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares Universirty, Tehran, Iran.
One of the most effective ways to solve the problems caused by the presence of steel implants in the body is to apply a coating to them. This study aims to develop and optimize composite coatings of magnesium oxide (MgO), 58S bioactive glass (BG), and N-carboxymethyl chitosan (N-CMC) on stainless steel (SS316L) substrates using the electrophoretic deposition (EPD) method. The synthesized materials were characterized using FTIR, XRD, and SEM to confirm their structure and morphology prior to coating.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China.
The corrosion resistance of nickel-titanium nitride (Ni/TiN) composites is significantly influenced by the operation parameters during the jet pulse electrodeposition (JPE) process. The effect of current density, jet rate, TiN concentration, and duty cycle impact on the anti-corrosion property of Ni/TiN composites were investigated and optimized using the response surface method (RSM). After the optimization of the operation parameters, the corrosion current of Ni/TiN composites decreased from 9.
View Article and Find Full Text PDFSmall
December 2024
Institute of Energy Power Innovation, North China Electric Power University, Beijing, 102206, P. R. China.
The hydrolysis of lightweight metal-based materials is a promising technology for supplying hydrogen to portable fuel cells. Various additives for the catalytic modification of Mg hydrolysis have been investigated. Efficient catalysts and small magnesium particle sizes are key to enhancing the rate of hydrogen production.
View Article and Find Full Text PDFAppl Biochem Biotechnol
December 2024
School of Metallurgy, Northeastern University, Shenyang, China.
Electrochemical and shake flask tests were used to examine the corrosion characteristics of typical gangue minerals in biometallurgical systems and their impact on microbial communities. The results show that the solubility order of the three gangue minerals is feldspar, mica, and quartz in descending order. Their corrosion processes are mainly controlled by cathodic electron-donating processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!