Polymer-based circularly polarized luminescence (CPL) materials with the advantage of diversified structure, easy fabrication, high thermal stability, and tunable properties have garnered considerable attention. However, adequate and precise tuning over CPL in polymer-based materials remains challenging due to the difficulty in regulating chiral structures. Herein, visualized full-color CPL is achieved by doping red, green, and blue quantum dots (QDs) into reconfigurable blue phase liquid crystal elastomers (BPLCEs). In contrast to the CPL signal observed in cholesteric liquid crystal elastomers (CLCEs), the chiral 3D cubic superstructure of BPLCEs induces an opposite CPL signal. Notably, this effect is entirely independent of photonic bandgaps (PBGs) and results in a high g value, even without matching between PBGs and the emission bands of QDs. Meanwhile, the lattice structure of the BPLCEs can be reversibly switched via mechanical stretching force, inducing on-off switching of the CPL signals, and these variations can be further fixed using dynamic disulfide bonds in the BPLCEs. Moreover, the smart polymer-based CPL systems using the BPLCEs for anti-counterfeiting and information encryption have been demonstrated, suggesting the great potential of the BPLCEs-based CPL active materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178798 | PMC |
http://dx.doi.org/10.1038/s41377-024-01479-1 | DOI Listing |
Langmuir
January 2025
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India.
Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China. Electronic address:
This research investigated the effect modified solvent-shifting method on the formation, ordered structure, and morphology of V-type starch. Ionic liquid (IL) dissolution and hot ethanol aqueous incubation in gradient concentrations from 30 % to 80 % (v/v) were applied to optimize the relative crystallinity of V-type starch. The results showed that this new method worked in producing V-type conformation, and higher ethanol concentration tended to yield V-type starch with higher crystallinity and more disk-like shape structure within the ethanol range of 30-50 % (v/v).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Electronic address:
Hypothesis: Charge-stabilized colloidal cellulose nanocrystals (CNCs) can self-assemble into higher-ordered chiral nematic structures by varying the volume fraction. The assembly process exhibits distinct dynamics during the isotropic to liquid crystal phase transition, which can be elucidated using X-ray photon correlation spectroscopy (XPCS).
Experiments: Anionic CNCs were dispersed in propylene glycol (PG) and water spanning a range of volume fractions, encompassing several phase transitions.
Adv Sci (Weinh)
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Non-close-packed crystalline arrays of colloidal particles in an elastic matrix exhibit mechanochromism. However, small interparticle distances often limit the range of reversible color shifts and reduce reflectivity during a blueshift. A straightforward, reproducible strategy using matrix swelling to increase interparticle distance and improve mechanochromic performance is presented.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Materials Science and Engineering, University of Texas Dallas 800 W Campbell Rd Richardson TX 75080 USA
Although the Rare Earth (RE)FeB type magnets were invented in the 1980s and are widely used worldwide. Yet, the phase formation and dissolution mechanisms are still not crystal clear. The reaction dynamics between rare earth elements (REE) and the iron-enriched matrix are essential to understanding the formation of hard magnetic REE-Fe-B phase or, conversely, phase dissociation and performance degeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!