Umami substances have the potential to enhance the perception of saltiness and thus reduce sodium intake. Two sensory evaluation experiments were conducted, involving participants tasting salt solutions, and solutions with added umami substances at equal sodium concentrations. Umami substances included sodium glutamate (MSG), disodium inosinate (IMP), and the combination of them which has a synergistic effect and is a closer match to commonly-consumed foods. In Experiment 1, using the two-alternative forced-choice (2-AFC) method by 330 consumers, paired comparisons were conducted at three different sodium concentrations. The combination of MSG and IMP enhanced the perception of saltiness (p < .001 in the difference test), whereas presenting either umami substance in isolation failed to do so (p > .05 in the similarity test). Significant order effects occurred in paired comparisons. In Experiment 2, a two-sip time-intensity (TI) analysis with trained panellists verified these results and found that tasting MSG and IMP either simultaneously or successively enhanced saltiness perception at equal sodium concentrations. These findings indicate that the synergistic effect of umami substances may be the cause of saltiness enhancement, and represents a potential strategy for sodium reduction while satisfying the consumer demand for saltiness perception. Considering the application in food processing and in food pairing, umami substances can potentially be used to help to reduce salt intake in food consumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.114516 | DOI Listing |
To prepare dual-functional seasoning ingredients with a salty-umami taste, five proteases were applied to hydrolyze proteins, preparing enzymatic hydrolysates. Their taste compounds along with the salty-umami taste, were investigated. The results revealed that enzymatic hydrolysis facilitated the release of taste compounds from .
View Article and Find Full Text PDFMolecules
November 2024
Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Currently, lipid/polymer membranes are used in taste sensors to quantify food taste. This research aims to improve sweetness sensors by more selectively detecting uncharged sweetening substances, which have difficulty obtaining a potentiometric response. Lipid/polymer membranes with varying amounts of tetradodecylammonium bromide (TDAB) and 1,2,4-benzene tricarboxylic acid (trimellitic acid) were prepared.
View Article and Find Full Text PDFFoods
December 2024
National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
brine is a special flavored food produced by the natural fermentation of lees. To clarify fermentation time on its quality, this study integrated flavoromics analysis, macro-genomics, and polypeptide omics to analyze the volatile flavor components, microbial species, and flavor peptide distributions of four groups of samples (XZ-1Y, XZ-2Y, XZ-3Y, and XZ-4Y) fermented for 1-4 years. The results showed that the samples fermented for 1 year had the highest contents of umami amino acids and umami peptides, and the samples fermented for 4 years had the highest contents of organic acids and fruity components.
View Article and Find Full Text PDFFood Chem X
December 2024
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
The levels of flavor compounds and hazardous compounds are important indicators for evaluating high-temperature roasted food. In this paper, the effect of tea pre-marination on non-volatile compounds, volatile compounds, and hazardous compounds in roasted chicken. The results showed that the total content of key umami non-volatile compounds in roasted chicken marinated with green tea, white tea, and black tea increased by 17.
View Article and Find Full Text PDFFood Chem
November 2024
Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!