Background: The detection of plasticizers in the environment is important to prevent environmental risks and people's health hazards. Improving recycling efficiency of waste PVC still faced challenges.
Results: In this work, it was found that solid products from waste PVC/coal gangue dechlorination in subcritical water (dPVC) had strong catalysis activity for luminol-HO chemiluminescence (CL) reaction. Phthalates, common plasticizers, could bond and adsorb on dPVC, which greatly inhibited the luminol-HO-dPVC CL reaction. Based on this, a low-cost CL analysis was constructed for the detection of phthalates combinations (PACs) and di-(2-ethylhexyl) phthalate (DEHP) in the environment. The detection limit for PACs and DEHP was 0.048 ng/L and 0.13 ng/L, respectively. Compared with HPLC standard method, the dPVC CL analysis had accuracy and reliability for the detection of phthalates in actual environmental samples. Besides, the results of life cycle assessment (LCA) revealed that dPVC for CL sensing materials had significantly small global warming potential (GWP).
Significance: The use of dPVC for CL sensing not only improved the recycling efficiency of PVC, but also reduced carbon emissions of obtaining CL sensing materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2024.342803 | DOI Listing |
Environ Toxicol Chem
January 2025
School of Energy and Environmental Engineering, University of Science and Technology Beijing, 100083China.
Phthalates, known as phthalate esters (PAEs), are among the most ubiquitous pervasive env7ironmental endocrine disruptors (EEDs), extensively utilized globally in various facets of modern life due to their irreplaceable role as plasticizers. The exponential production and utilization of plastic goods have substantially escalated plastic waste accumulation. Consequently, PAEs have infiltrated the environment, contaminating food and drinking water reservoirs, posing notable threats to human health.
View Article and Find Full Text PDFToxicol Ind Health
January 2025
Department of of Toxicology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Turkey.
Di-2-(ethylhexyl)phthalate (DEHP) is a phthalate derivative used extensively in a wide range of materials, such as medical devices, toys, cosmetics, and personal care products. Many mechanisms, including epigenetics, may be involved in the effects of phthalates on brain development. In this study, Sprague-Dawley male rats were obtained 21-23 days after their birth (post-weaning) and were exposed to DEHP during the prepubertal period with low-dose DEHP (DEHP-L, 30 mg/kg/day) and high-dose DEHP (DEHP-H, 60 mg/kg/day, 37 days) until the end of adolescence (PND 60).
View Article and Find Full Text PDFA method involving gas chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry (GC-Q/Orbitrap HRMS) with the QuEChERS method was developed to analyze 36 non-phthalate plasticizers in milk powder products. The samples were dissolved in 20% NaCl, extracted with acetonitrile, and purified using silica, PSA, and C. The results showed the excellent linear relationship of the calibration curves of 36 non-phthalate plasticizers in the range of 10-1000 ng mL, with correlation coefficients () not less than 0.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China. Electronic address:
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants with mutagenicity, carcinogenicity and teratogenicity, widely distributed in the environment. Effective biodegradation of PAHs is highly required, especially in wastewater. An efficient PAHs degrading strain Streptomyces sp.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, USA; Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, West Lafayette, Indiana 47907, USA.
Numerous unregulated organic compounds (UOCs) including pharmaceuticals, opioids, and personal care products (PCPs) end up in wastewater. UOC presence in biosolids (a wastewater treatment byproduct), which are applied to soil for different reasons raises environmental and health risk concerns. In this study, two multi-class extraction methods were developed and validated to target 111 UOCs from 8 different major families simultaneously in biosolids and biosolids-impacted soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!