Molecular cloning and functional characterization of 2,3-oxidosqualene cyclases from Artemisia argyi.

Protein Expr Purif

Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China. Electronic address:

Published: October 2024

AI Article Synopsis

  • Artemisia argyi is a medicinal plant known for its health benefits due to its various triterpenoids that have anti-viral, anti-cancer, and anti-oxidant properties.
  • The study focuses on isolating and identifying four genes related to the 2,3-oxidosqualene cyclase (OSC) family, which are crucial for the triterpenoid biosynthesis pathway in A. argyi.
  • Three of the isolated OSC genes were shown to produce different triterpenoids through a yeast expression system, enhancing knowledge of how these valuable compounds are synthesized in the plant.

Article Abstract

Artemisia argyi is a traditional medicinal and edible plant, generating various triterpenoids with pharmacological activities, such as anti-virus, anti-cancer, and anti-oxidant. The 2,3-oxidosqualene cyclase family of A. argyi offers novel insights into the triterpenoid pathway, which might contribute to the medicinal value of its tissue extracts. Nevertheless, the biosynthesis of active triterpenoids in Artemisia argyi is still uncertain. In this study, four putative OSC (2,3-oxidosqualene cyclase) genes (AaOSC1-4) were first isolated and identified from A. argyi. Through the yeast heterologous expression system, three AaOSCs were characterized for the biosynthesis of diverse triterpenoids including cycloartenol, β-amyrin, (3S,13R)-malabarica-14(27),17,21-trien-3β-ol, and dammara-20,24-dien-3β-ol. AaOSC1 was a multifunctional dammara-20,24-dien-3β-ol synthase, which yielded 8 different triterpenoids, including tricyclic, and tetracyclic products. AaOSC2 and AaOSC3 were cycloartenol, and β-amyrin synthases, respectively. As a result, these findings provide a deeper understanding of the biosynthesis pathway of triterpenes in A. argyi.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2024.106533DOI Listing

Publication Analysis

Top Keywords

artemisia argyi
12
23-oxidosqualene cyclase
8
triterpenoids including
8
cycloartenol β-amyrin
8
argyi
6
molecular cloning
4
cloning functional
4
functional characterization
4
characterization 23-oxidosqualene
4
23-oxidosqualene cyclases
4

Similar Publications

Global climate change and invasive plants significantly impact biodiversity and ecosystem functions. This study focuses on the effects of progressive warming on microbial communities within the invasion community, simulated through six stages of invasion progression, from minimal to dominant presence alongside native , in bulk soils collected from a natural habitat and cultivated under controlled greenhouse conditions. Utilizing high-throughput sequencing and microbial community analysis on 72 samples collected from the invasion community, the shifts in soil microbiota under varying warming scenarios were investigated (+0 °C, +1.

View Article and Find Full Text PDF

Antimicrobial polyketides from the endophytic fungus Fusarium asiaticum QA-6 derived from medicinal plant Artemisia argyi.

Phytochemistry

January 2025

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, And Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Nanhai Road 7, Qingdao, 266071, PR China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, PR China. Electronic address:

Seven previously undescribed polyketide derivatives, fusariumtides A-G (1-7), together with three known analogues (8-10), were isolated from the culture extract of Fusarium asiaticum QA-6, an endophytic fungus obtained from the fresh stem tissue of the medicinal plant Artemisia argyi H. Lev. & Vaniot.

View Article and Find Full Text PDF

Volatile compounds have a deep influence on the quality and application of the medicinal herb ; however, little is known about the effect of UV-B radiation on volatile metabolites. We herein investigated the effects of UV-B exposure on the volatile compounds and transcriptome of to assess the potential for improving its quality and medicinal characteristics. Out of 733 volatiles obtained, a total of 133 differentially expressed metabolites (DEMs) were identified by metabolome analysis.

View Article and Find Full Text PDF

[Development of DUS testing guidelines of Artemisia argyi].

Zhongguo Zhong Yao Za Zhi

November 2024

College of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065, China Hubei Shizhen Laboratory Wuhan 430065, China.

Artemisia argyi is a perennial herbaceous herb of the Artemisia family, with leaves for medical use. However, the germplasm of A. argyi is seriously unclear and mixed during production, and it is urgent to protect new varieties of A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!