A high-fat diet induces changes in mesenteric adipose tissue accelerating early-stage pancreatic carcinogenesis in mice.

J Nutr Biochem

Department of Nutrition, University of California, Davis, California, USA; University of California Davis Comprehensive Cancer Center, University of California, Sacramento, California, USA. Electronic address:

Published: September 2024

Increased adiposity is a significant risk factor for pancreatic cancer development. Multiple preclinical studies have documented that high-fat, high calorie diets, rich in omega-6 fatty acids (FA) accelerate pancreatic cancer development. However, the effect of a high-fat, low sucrose diet (HFD), on pancreatic carcinogenesis remains unclear. We evaluated the impact of a HFD on early-stage pancreatic carcinogenesis in the clinically relevant Kras; Ptf1a (KC) genetically engineered mouse model, and characterized the role of the mesenteric adipose tissue (MAT). Cohorts of male and female KC mice were randomly assigned to a control diet (CD) or a HFD, matched for FA composition (9:1 of omega-6 FA: omega-3 FA), and fed their diets for 8 weeks. After 8 weeks on a HFD, KC mice had significantly higher body weight, fat mass, and serum leptin compared to CD-fed KC mice. Furthermore, a HFD accelerated pancreatic acinar-to-ductal metaplasia (ADM) and proliferation, associated with increased activation of ERK and STAT3, and macrophage infiltration in the pancreas, compared to CD-fed KC mice. Metabolomics analysis of the MAT revealed sex differences between diet groups. In females, a HFD altered metabolites related to FA (α-linolenic acid and linoleic acid) and amino acid metabolism (alanine, aspartate, glutamate). In males, a HFD significantly affected pathways related to alanine, aspartate, glutamate, linoleic acid, and the citric acid cycle. A HFD accelerates early pancreatic ADM through multifaceted mechanisms, including effects at the tumor and surrounding MAT. The sex-dependent changes in MAT metabolites could explain some of the sex differences in HFD-induced pancreatic ADM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2024.109690DOI Listing

Publication Analysis

Top Keywords

pancreatic carcinogenesis
12
mesenteric adipose
8
adipose tissue
8
pancreatic
8
early-stage pancreatic
8
pancreatic cancer
8
cancer development
8
hfd
8
diet hfd
8
compared cd-fed
8

Similar Publications

UBE2Q2 promotes tumor progression and glycolysis of hepatocellular carcinoma through NF-κB/HIF1α signal pathway.

Cell Oncol (Dordr)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China.

Purpose: Metabolic reprogramming, particularly the Warburg effect, plays a crucial role in the onset and progression of tumors. The ubiquitin-conjugating enzyme E2 Q2 (UBE2Q2) has been identified overexpressed in hepatocellular carcinoma (HCC). Our aim was to determine if UBE2Q2 plays a role in regulating glycolysis, contributing to the carcinogenesis of HCC.

View Article and Find Full Text PDF

Benzo[a]pyrene exposure and incident risks of digestive system cancers: Insights from nested case-control studies and adverse outcome pathway network analysis.

J Hazard Mater

January 2025

Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China. Electronic address:

Benzo[a]pyrene (B[a]P) is a recognized carcinogen for lung cancer, but its associations with digestive system cancers (DSCs) remain unclear and the common carcinogenic mechanisms are not fully understood. We conducted five nested case-control studies within the Dongfeng-Tongji cohort, including esophageal (EC, n = 58), gastric (GC, n = 103), colorectal (CRC, n = 220), hepatic (HC, n = 117), and pancreatic cancers (PC, n = 45). For each case, two sex and age ( ± 5 years) matched healthy controls were selected.

View Article and Find Full Text PDF

Pancreatic stellate cell: Update on molecular investigations and clinical translation in pancreatic cancer.

Int J Cancer

January 2025

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China.

Pancreatic cancer is a particularly aggressive tumor, distinguished by the presence of a prominent collagenous stroma and desmoplasia that envelops the tumor cells. Pancreatic stellate cell (PSC) contributes to the formation of a dense fibrotic stroma and has been demonstrated to facilitate tumor progression. As the significance of PSCs is increasingly revealed, more explorations are focused on the complex molecular mechanisms and tumor-stromal crosstalk in order to guide potential therapeutic approaches through deactivating or reprogramming PSCs.

View Article and Find Full Text PDF

Targeting MXD1 sensitises pancreatic cancer to trametinib.

Gut

January 2025

State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China

Background: The resistance of pancreatic ductal adenocarcinoma (PDAC) to trametinib therapy limits its clinical use. However, the molecular mechanisms underlying trametinib resistance in PDAC remain unclear.

Objective: We aimed to illustrate the mechanisms of resistance to trametinib in PDAC and identify trametinib resistance-associated druggable targets, thus improving the treatment efficacy of trametinib-resistant PDAC.

View Article and Find Full Text PDF

Whether or not pancreaticobiliary maljunction (PBM) is a risk factor for pancreatic cancer (PC) is unclear. We present a case of metachronous PC with PBM diagnosed after cholecystectomy for gallbladder cancer, in which follow-up imaging was possible until PC onset. A 63-year-old man who had been diagnosed with gallbladder cancer and had undergone cholecystectomy 5 years earlier developed pancreatitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!