Firefly luciferase (Fluc) from Photinus pyralis is one of the most widely used reporter proteins in biomedical research. Despite its widespread use, Fluc's protein phase transition behaviors and phase separation characteristics have not received much attention. Current research uncovers Fluc's intrinsic property to phase separate in mammalian cells upon a simple cell culture temperature change. Specifically, Fluc spontaneously produced needle-shaped crystal-like inclusion bodies upon temperature shift to the hypothermic temperatures ranging from 25 °C to 31 °C. The crystal-like inclusion bodies were not associated with or surrounded by membranous organelles and were likely built from the cytosolic pool of Fluc. Furthermore, the crystal-like inclusion formation was suppressed when cells were cultured in the presence of D-luciferin and its synthetic analog, as well as the benzothiazole family of so-called stabilizing inhibitors. These two classes of compounds inhibited intracellular Fluc crystallization by different modes of action as they had contrasting effects on steady-state luciferase protein accumulation levels. This study suggests that, under substrate insufficient conditions, the excess Fluc phase separates into a crystal-like state that can modulate intracellular soluble enzyme availability and protein turnover rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2024.114131 | DOI Listing |
Exp Cell Res
July 2024
Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science Amgen Inc., South San Francisco, CA 94080, USA. Electronic address:
Firefly luciferase (Fluc) from Photinus pyralis is one of the most widely used reporter proteins in biomedical research. Despite its widespread use, Fluc's protein phase transition behaviors and phase separation characteristics have not received much attention. Current research uncovers Fluc's intrinsic property to phase separate in mammalian cells upon a simple cell culture temperature change.
View Article and Find Full Text PDFIndian J Pathol Microbiol
April 2024
Department of Internal Medicine, Handan People's Hospital, Handan, Hebei Province, China.
Liver Int
November 2023
School of Medical Sciences (Molecular and Cellular Biomedicine), The University of Sydney, Sydney, New South Wales, Australia.
This thematic review aims to provide an overview of the current state of knowledge about the occurrence of giant mitochondria or megamitochondria in liver parenchymal cells. Their presence and accumulation are considered to be a major pathological hallmark of the health and fate of liver parenchymal cells that leads to overall tissue deterioration and eventually results in organ failure. The first description on giant mitochondria dates back to the 1960s, coinciding with the availability of the first generation of electron microscopes in clinical diagnostic laboratories.
View Article and Find Full Text PDFJ Control Release
July 2022
Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
Weakly basic small molecule drugs like clofazimine can be used as building blocks for endowing cells with unnatural structural and functional elements. Here, we describe how clofazimine represents a first-in-class mechanopharmaceutical device, serving to construct inert, inactive and stimulus responsive drug depots within the endophagolysosomal compartment of cells of living organisms. Upon oral administration, clofazimine molecules self-assemble into stable, membrane-bound, crystal-like drug inclusions (CLDI) that accumulate within macrophages to form a "smart" biocompatible, pathogen activatable mechanopharmaceutical device.
View Article and Find Full Text PDFRSC Adv
March 2022
Department of Chemistry, School of Science, The University of Jordan Amman 11942 Jordan +962-979250409.
This study aimed to clarify the physico-chemical properties of cucurbit[7]uril (CB[7]) and cinnamaldehyde (Cinn) inclusion complexes (CB[7]-Cinn) and their resulting antitumor activity. CB[7]-Cinn inclusion complexes were prepared by a simple experimental approach and fully characterized for their stoichiometry, formation constant, particle size and morphology. Quantum chemical calculations were performed to elucidate the stable molecular structures of the inclusion complexes and their precursors and to investigate the probable stoichiometry and direction of interaction using three different DFT functionals at the 6-31G(d,p) basis set.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!