A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of reduced graphene oxide nanomaterials on transformation of C-triclosan in soils. | LitMetric

Effects of reduced graphene oxide nanomaterials on transformation of C-triclosan in soils.

Sci Total Environ

Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China. Electronic address:

Published: October 2024

Increasing use and release of graphene nanomaterials and pharmaceutical and personal care products (PPCPs) in soil environment have polluted the environment and posed high ecological risks. However, little is understood about the interactive effects and mechanism of graphene on the behaviors of PPCPs in soil. In the present study, the effects of reduced graphene oxide nanomaterials (RGO) on the fate of triclosan in two typical soils (S1: silty loam; S2: silty clay loam) were investigated with C-triclosan, high-resolution mass spectrometry, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and microbial community structure analysis. The results showed that RGO prolonged the half-life of triclosan by 23.6-51.3 %, but delayed the formation of transformed products such as methyl triclosan and dechlorinated dimer of triclosan in the two typical soils. Mineralization of triclosan to CO was inhibited by 48.2-79.3 % in 500 mg kg RGO in comparison with that in the control, whereas the bound residue was 54.2-56.4 % greater than the control. RGO also reduced the relative abundances of triclosan-degrading bacteria (Pseudomonas and Sphingomonas) in soils. Compared to silty loam, RGO more effectively inhibited triclosan degradation in silty clay loam. Furthermore, the DFT calculations suggested a strong association of the adsorption of triclosan on RGO with the van der Waals forces and π-π interactions. These results revealed that RGO inhibited the transformation of C-triclosan in soil through strong adsorption and triclosan-degrading bacteria inhibition in soils. Therefore, the presence of RGO may potentially enhance persistence of triclosan in soil. Overall, our study provides valuable insights into the risk assessment of triclosan in the presence of GNs in soil environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173858DOI Listing

Publication Analysis

Top Keywords

triclosan
9
effects reduced
8
reduced graphene
8
graphene oxide
8
oxide nanomaterials
8
transformation c-triclosan
8
ppcps soil
8
soil environment
8
soil study
8
rgo
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!