Wastewater surveillance (WWS) has received significant attention as a rapid, sensitive, and cost-effective tool for monitoring various pathogens in a community. WWS is employed to assess the spatial and temporal trends of diseases and identify their early appearances and reappearances, as well as to detect novel and mutated variants. However, the shedding rates of pathogens vary significantly depending on factors such as disease severity, the physiology of affected individuals, and the characteristics of pathogen. Furthermore, pathogens may exhibit differential fate and decay kinetics in the sewerage system. Variable shedding rates and decay kinetics may affect the detection of pathogens in wastewater. This may influence the interpretation of results and the conclusions of WWS studies. When selecting a pathogen for WWS, it is essential to consider it's specific characteristics. If data are not readily available, factors such as fate, decay, and shedding rates should be assessed before conducting surveillance. Alternatively, these factors can be compared to those of similar pathogens for which such data are available.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173862 | DOI Listing |
Arch Razi Inst
June 2024
Department of Clinical Science, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Alborz, Iran.
Infectious bronchitis virus (IBV) has a variety of serotypes that cause many problems in the poultry industry. Two H120 and H120-D274 live vaccines were evaluated against strain IS/1494/06 (variant 2) IBV challenge. The study aimed to determine whether it was possible to achieve success in controlling disease symptoms and pathological lesions and reducing virus shedding by combining two types of vaccines against different severities of poultry IBV.
View Article and Find Full Text PDFRes Vet Sci
December 2024
Botswana University of Agriculture and Natural Resources, P/Bag BR 0027, Gaborone, Botswana.
Approximately 20 million cases and 0.15 million human fatalities worldwide each year are caused by Salmonellosis. A mechanistic compartmental model based on ordinary differential equations is proposed to evaluate the effects of temperature and pH on the transmission dynamics of Salmonellosis.
View Article and Find Full Text PDFAcc Chem Res
December 2024
Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States.
ConspectusThe surface of a catalyst is crucial for understanding the mechanisms of catalytic reactions at the molecular level and developing new catalysts with higher activity, selectivity, and durability. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a technique studying the surface of a sample in the gas phase, mainly identifying chemical identity, analyzing oxidation state, and measuring surface composition.In the last decade, numerous photoelectron spectroscopic methods for fundamental studies of key topics in catalysis using AP-XPS have been developed.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States of America. Electronic address:
Measles is a highly transmissible disease of increasing concern due to waning vaccination contributing to a significant rise in measles cases, with 283 reported cases and 16 outbreaks in the U.S. as of November 7, 2024.
View Article and Find Full Text PDFJ Zoo Wildl Med
December 2024
San Diego Zoo Wildlife Alliance, San Diego, CA 92112, USA.
Yersiniosis due to can be associated with high morbidity and mortality in various species and has been a cosmopolitan management challenge in zoological institutions. This gram-negative, environmental bacterium thrives in cold, wet conditions and poses a risk to zoo species. Outbreaks can be costly and impact conservation efforts through loss of threatened and endangered species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!