This study evaluated the reflection of long-term anaerobic system exposed to sulfate and propionate. Fe@C was found to efficiently mitigate anaerobic sulfate inhibition and enhance propionate degradation. With influent propionate of 12000mgCOD/L and COD/SO ratio of 3.0, methane productivity and sulfate removal were only 0.06 ± 0.02L/gCOD and 63 %, respectively. Fe@C helped recover methane productivity to 0.23 ± 0.03L/gCOD, and remove sulfate completely. After alleviating sulfate stress, less organic substrate was utilized to form extracellular polymeric substances for self-protection, which enhanced mass transfer in anaerobic sludge. Microbial community succession, especially for alteration of key sulfate-reducing bacteria and propionate-oxidizing bacteria, was driven by Fe@C, thus enhancing sulfate reduction and propionate degradation. Acetotrophic Methanothrix and hydrogenotrophic unclassified_f_Methanoregulaceae were enriched to promote methanogenesis. Regarding propionate metabolism, inhibited methylmalonyl-CoA degradation was a limiting step under sulfate stress, and was mitigated by Fe@C. Overall, this study provides perspective on Fe@C's future application on sulfate and propionate rich wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.130968 | DOI Listing |
Microbiol Spectr
January 2025
Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan.
Colon cancer development may be initiated by multiple factors, including chronic inflammation, genetic disposition, and gut dysbiosis. The loss of beneficial bacteria and increased abundance of detrimental microbes exacerbates disease progression. () is a human gut microbe, and its colon colonization is enhanced by a seaweed-supplemented diet.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Ulva lactuca polysaccharide (ULP), a sulfated polysaccharide, has been widely used in Asia. However, its digestion process and utilization by gut microbiota remain poorly understood. In this study, the in vitro simulated digestion and fermentation were used to analyze the digestibility of ULP.
View Article and Find Full Text PDFFront Microbiol
December 2024
Institute of Microbiology, Leibniz University Hannover, Hannover, Germany.
Peatlands are invaluable but threatened ecosystems that store huge amounts of organic carbon globally and emit the greenhouse gasses carbon dioxide (CO) and methane (CH). Trophic interactions of microbial groups essential for methanogenesis are poorly understood in such systems, despite their importance. Thus, the present study aimed at unraveling trophic interactions between fermenters and methanogens in a nitrogen-limited, subarctic, pH-neutral fen.
View Article and Find Full Text PDFAm J Transl Res
November 2024
Department of Dermatology, Guangdong Provincial Hospital of Chinese Medicine Guangzhou 510120, Guangdong, China.
Blood Cell Ther
November 2024
Clinical Hematology & Medical Oncology.
Introduction: The gut microbiome has an established role in allogeneic hematopoietic cell transplantation (allo-HCT), but not in an auto-HCT setting. We have hypothesized that fecal short-chain fatty acids (SCFA) and urinary 3-indoxyl sulfate (3-IS), which are metabolites derived from the action of the gut microbiome on dietary fiber, play a role in auto-HCT outcomes.
Methods: This was a single-center prospective study involving auto-HCT recipients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!