Effect of long-term inorganic arsenic exposure on erythropoietin production in vitro.

Toxicol In Vitro

Laboratory of Toxicology, Graduate School of Life and Environmental Sciences, Faculty of Veterinary Medicine, Osaka Metropolitan University, 1-58 Rinku Ohrai-Kita, Izumisano, Osaka 598-853, Japan. Electronic address:

Published: August 2024

Arsenic is widely present in the environment in trivalent and pentavalent forms; long-term arsenic exposure due to environmental pollution has become a problem. Previous reports have shown that 24-h exposure to arsenate (as pentavalent arsenic) potentiates erythropoietin (EPO) production via reactive oxygen species (ROS) in EPO-producing HepG2 cells. However, the effects of long-term arsenate exposure on EPO production remain unclear. In HepG2 cells subcultured for 3 weeks in the presence of arsenate, EPO mRNA levels were lower than those in untreated cells. Levels of ARSENITE METHYLTRANSFERASE mRNA, as well as those of Nuclear factor erythroid 2-related factor 2, glutathione, and superoxide dismutase proteins, were increased compared to untreated cells, but levels of malondialdehyde were not significantly altered. Thus, long-term exposure to arsenate enhances ROS scavenging, suggesting that the ROS-induced accumulation of EPO mRNA is attenuated by arsenate exposure. The induction of EPO accumulation by hypoxia also was attenuated by long-term arsenate exposure, suggesting an impairment in responsivity of EPO production. Furthermore, mRNA levels of SIRTUIN-1, which affects EPO transcription, were potentiated by long-term arsenate exposure. These results suggest that long-term arsenate exposure has multiple, distinct effects on EPO production in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2024.105877DOI Listing

Publication Analysis

Top Keywords

arsenate exposure
20
epo production
16
long-term arsenate
16
exposure
9
arsenic exposure
8
production vitro
8
arsenate
8
exposure arsenate
8
epo
8
hepg2 cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!