Background: Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen that can cause many community and hospital-acquired infections. This study was conducted to investigate the SCCmec gene types responsible for methicillin resistance in MRSA isolates isolated from hospitalised patients.
Material And Methods: MRSA isolates isolated from samples sent from various clinics to Gaziantep University Hospital Microbiology Laboratory between March 2021-January 2022 were included in the study. Bacteria were identified using by VITEK 2 automated system. Cefoxitin (FOX) resistance was determined by the disc diffusion method according to EUCAST standards. Cefoxitin resistance was confirmed by the Penicillin Binding Protein 2' latex agglutination test. Types of mecA, mecC, coa, nuc, Panton Valentin Leukocidin (PVL), ccrC2, class A mec, SCCmec types in isolates detected as MRSA were investigated by real-time PCR.
Results: In this study, 116 isolates meeting the study criteria were examined. By detecting the nuc and coa genes in all isolates by PCR, the phenotypic identification of S.aureus was confirmed. While the mecA gene was detected in all MRSA isolates, no mecC gene was detected in any isolates. Detected SCCmec types were as follows; SCCmec Type 1 (2.6%), Type II (28.4%), Type III (12.9%), Type IVa (11.2%), Type IVb (3.4%), Type IVc (3.4%), Type IVg (12.1%), Type V (0.9%), Type VII (4.3%), Type VIII (18.1%), Type IX (0.9%), Type XII (1.7%). On the other hand, SCCmec Type VI, X, XI and XIII were not found in any isolate. It was determined that four of the MRSA isolates (3.4%) carried the PVL gene that two (50%) of these were found in SCCmec Type VIII.
Conclusion: Monitoring of FOX resistance is an effective and safe method for determination of MRSA isolates. The change in the mec gene causes resistance, which should be monitored regularly with molecular methods. Our study is the first study in Turkey.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmmb.2024.100649 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!