. To fabricate and validate a novel focused collimator designed to spare normal tissue in a murine hemithoracic irradiation model using 250 MeV protons delivered at ultra-high dose rates (UHDRs) for preclinical FLASH radiation therapy (FLASH-RT) studies.. A brass collimator was developed to shape 250 MeV UHDR protons from our Varian ProBeam. Six 13 mm apertures, of equivalent size to kV x-ray fields historically used to perform hemithorax irradiations, were precisely machined to match beam divergence, allowing concurrent hemithoracic irradiation of six mice while sparing the contralateral lung and abdominal organs. The collimated field profiles were characterized by film dosimetry, and a radiation survey of neutron activation was performed to ensure the safety of staff positioning animals.. The brass collimator produced 1.2 mm penumbrae radiation fields comparable to kV x-rays used in preclinical studies. The penumbrae in the six apertures are similar, with full-width half-maxima of 13.3 mm and 13.5 mm for the central and peripheral apertures, respectively. The collimator delivered a similar dose at an average rate of 52 Gy sfor all apertures. While neutron activation produces a high (0.2 mSv h) initial ambient equivalent dose rate, a parallel work-flow in which imaging and setup are performed without the collimator ensures safety to staff.. Scanned protons have the greatest potential for future translation of FLASH-RT in clinical treatments due to their ability to treat deep-seated tumors with high conformality. However, the Gaussian distribution of dose in proton spots produces wider lateral penumbrae compared to other modalities. This presents a challenge in small animal pre-clinical studies, where millimeter-scale penumbrae are required to precisely target the intended volume. Offering high-throughput irradiation of mice with sharp penumbrae, our novel collimator-based platform serves as an important benchmark for enabling large-scale, cost-effective radiobiological studies of the FLASH effect in murine models.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ad589fDOI Listing

Publication Analysis

Top Keywords

focused collimator
8
hemithoracic irradiation
8
250 mev
8
brass collimator
8
irradiation mice
8
neutron activation
8
safety staff
8
collimator
6
studies
5
penumbrae
5

Similar Publications

We demonstrate experimentally an efficient terahertz emitter that consists of a 20 µm thick layer of LiNbO clamped between a fused silica substrate and a Si semicone. A focused laser beam from an ultrafast optical oscillator propagates in the LiNbO layer and emits a Cherenkov cone of terahertz radiation to the Si semicone. The radiation is totally internally reflected by the semicone's convex surface and escapes the semicone through its base as a collimated beam.

View Article and Find Full Text PDF

To accurately model and validate the 6 MV Elekta Compactlinear accelerator using the Geant4 Application for Tomographic Emission (GATE). In particular, this study focuses on the precise calibration and validation of critical parameters, including jaw collimator positioning, electron source nominal energy, flattening filter geometry, and electron source spot size, which are often not provided in technical documentation. Methods: Simulation of the Elekta Compact6 MV linear accelerator was performed using the Geant4 Application for Tomographic Emission (GATE) v.

View Article and Find Full Text PDF

Background: High-dose-rate (HDR) brachytherapy using Iridium-192 as a radiation source is widely employed in cancer treatment to deliver concentrated radiation doses while minimizing normal tissue exposure. In this treatment, the precision with which the sealed radioisotope source is delivered significantly impacts clinical outcomes.

Purpose: This study aims to evaluate the feasibility of a new four-dimensional (4D) in vivo source tracking and treatment verification system for HDR brachytherapy using a patient-specific approach.

View Article and Find Full Text PDF

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

intra-arc binary collimation (iABC) is a novel treatment technique in which dynamic conformal arcs are periodically interrupted with binary collimation. It has demonstrated its utility through planning studies for the treatment of multiple metastases. However, the binary collimation approach is idealized in the planning system, while the treatment deliveries must adhere to the physical limitations of the mechanical systems involved [e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!