Recent advancements in 3D cancer modeling have significantly enhanced our ability to delve into the intricacies of carcinogenesis. Despite the pharmaceutical industry's substantial investment of both capital and time in the drug screening and development pipeline, a concerning trend persists: drug candidates screened on conventional cancer models exhibit a dismal success rate in clinical trials. One pivotal factor contributing to this discrepancy is the absence of drug testing on pathophysiologically biomimetic 3D cancer models during pre-clinical stages. Unfortunately, current manual methods of 3D cancer modeling, such as spheroids and organoids, suffer from limitations in reproducibility and scalability. In our study, we have meticulously developed 3D bioprinted breast cancer model utilizing decellularized adipose tissue-based hydrogel obtained via a detergent-free decellularization method. Our innovative printing techniques allows for rapid, high-throughput fabrication of 3D cancer models in a 96-well plate format, demonstrating unmatched scalability and reproducibility. Moreover, we have conducted extensive validation, showcasing the efficacy of our platform through drug screening assays involving two potent anti-cancer drugs, 5-Fluorouracil and PRIMA-1. Notably, our platform facilitates effortless imaging and gene expression analysis, streamlining the evaluation process. In a bid to enhance the relevance of our cancer model, we have introduced a heterogeneous cell population into the DAT-based bioink. Through meticulous optimization and characterization, we have successfully developed a biomimetic immunocompetent breast cancer model, complete with microenvironmental cues and diverse cell populations. This breakthrough paves the way for rapid multiplex drug screening and the development of personalized cancer models, marking a paradigm shift in cancer research and pharmaceutical development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5090/ad586b | DOI Listing |
Cancer Discov
March 2025
University of California, San Francisco, San Francisco, CA, United States.
Historical studies performed nearly a century ago using mouse skin models identified two key steps in cancer evolution: initiation, a likely mutational event, and promotion, driven by inflammation and cell proliferation. Initiation was proposed to be permanent, with promotion as the critical rate-limiting step for cancer development. Here, we carried out whole genome sequencing to demonstrate that initiated cells with thousands of mutagen-induced mutations can persist for long periods and are not removed by cell competition or by immune intervention, thus mimicking the persistence of cells with cancer driver mutations in normal human tissues.
View Article and Find Full Text PDFMol Pharm
March 2025
Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Positive surgical margins following radical prostatectomy significantly contribute to tumor recurrence. While systemic chemotherapy demonstrates limited efficacy in this context, local chemotherapy drug delivery systems based on nanomaterials offer promising strategies to address this issue by modifying drug release kinetics and distribution, thereby enhancing antitumor effects while minimizing the toxicities associated with systemic chemotherapy. In this study, we utilized electrospun nanofibrous mats loaded with docetaxel for sustained drug delivery.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Raman-based theranostics has demonstrated great potential for sensitive real-time imaging and treatment. However, these advanced materials, primarily depending on the SERS technique, encounter clinical concerns regarding substrate biosafety. Herein, we molecularly engineered a substrate-free SICTERS small molecule, namely BTT-TPA (bis-thienyl-substituted benzotriazole selenadiazole derivative structures), possessing both ultrasensitive Raman signals and excellent photothermal effects based on self-stacking.
View Article and Find Full Text PDFBioinformatics
March 2025
Department of Computer Science, University of Turin, Torino, 10123, Italy.
Motivation: Computational models are crucial for addressing critical questions about systems evolution and deciphering system connections. The pivotal feature of making this concept recognisable from the biological and clinical community is the possibility of quickly inspecting the whole system, bearing in mind the different granularity levels of its components. This holistic view of system behaviour expands the evolution study by identifying the heterogeneous behaviours applicable, for example, to the cancer evolution study.
View Article and Find Full Text PDFJ Immunol
January 2025
Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
Natural killer (NK) cells are a promising approach for cellular cancer immunotherapy and are being investigated to treat patients with multiple myeloma (MM). We found that MM patient blood NK cell frequencies were normal with increased activating receptors and cytotoxic granules, without evidence of functional exhaustion. Despite this activated state, MM target cells were resistant to conventional NK cells by unclear mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!