Aroma, a principal determinant of consumer preference for fruit wines, has recently garnered much attention. Fruit wines brewing was concomitant with complex biochemical reactions, in which a variety of compounds jointly contribute to the aroma quality. To date, the mechanisms underlying the synthesis of aroma compounds and biological regulation methods in fruit wines have remained ambiguous, hindering the further improvement of fruit wines sensory profiles. This review provides a detailed account of the synthesis and regulatory mechanisms of typical aroma compounds and their contributions to the characteristics of wines. Additionally, Comprehensive involves between microflora and the formation of aroma compounds have been emphasized. The microflora-mediated aroma compounds evolution can be controlled by key fermentation techniques to protect and enhance. Meanwhile, the genes impacting key aroma compounds can be identified, which provide references for the rapid screening of aroma-enhanced strains as well as target formation of aroma by modifying relative genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.139981 | DOI Listing |
J Food Sci Technol
February 2025
Department of Food Process Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 India.
Unlabelled: Catechin hydrate (CH) is a kind of polyphenol present in many plantsincluding green tea, fruits, red wine and cocoa with very good antioxidant effect. The formulation of CH nanoemulsion increased the bioavailability and stability of catechin, allowing for easier food incorporation and faster absorption by the body. The major goal of the current study was to create a nanoemulsion as a reliable delivery mechanism for catechin hydrate and its incorporation into yogurt to increase its antioxidant activity.
View Article and Find Full Text PDFMolecules
January 2025
College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
The aroma and nutrition of Japanese apricot fruit change continuously as the fruit ripens. The differences in fruit aroma and nutrition can affect the resulting wine, which is produced by steeping the Japanese apricot fruit. In this study, we used HS-SPME-GC-MS to examine the aromatic compositions of Japanese apricot fruit and wine produced from its macerated fruit at different levels of ripeness.
View Article and Find Full Text PDFFood Chem
January 2025
Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China. Electronic address:
Although postharvest partial dehydration has been applied to enhance blueberry wine flavor by increasing terpene level, berry decay remains a concern. Melatonin is known to improve fruit resistance during storage, but its role in terpene accumulation in blueberries during postharvest dehydration remains unclear. This study identified aroma-active terpenes of blueberry wines applying aroma extract dilution analysis and revealed the key genes linked to the increased terpenes in dehydrated blueberries.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Post-Harvest and Agro-Processing Technologies Division, ARC Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa.
Apples and strawberries hold significant commercial and nutritional value but face pre- and post-harvest spoilage due to infections by While spoilage is conventionally managed using synthetic chemicals, there is a growing interest in utilising yeasts as biological control agents. This study aimed to assess the antifungal potential of non- yeasts , , and against three strains (B05.10, IWBT-FF1, and PPRI 30807) on agar plates and in post-harvest trials on apples and strawberries.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi, China.
Manganese (Mn) is involved in plant metabolism as an enzyme cofactor. However, the role of Mn in the formation of volatile compounds in grapes has rarely been studied. To address this gap, this study explored the effect of foliar Mn application on the aroma traits of grapes and wine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!