Mendelian randomization analysis of the brain, cerebrospinal fluid, and plasma proteome identifies potential drug targets for attention deficit hyperactivity disorder.

EBioMedicine

Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Published: July 2024

AI Article Synopsis

  • Researchers are looking for new treatments for ADHD by studying proteins in the brain, fluid around the brain, and blood to find what's causing it.
  • They used special methods to analyze many samples and see if proteins might be linked to ADHD and other related conditions.
  • They found seven proteins that are connected to ADHD risk, with GMPPB showing a strong link across different types of ADHD and also affecting related disorders.

Article Abstract

Background: The need for new therapeutics for attention deficit hyperactivity disorder (ADHD) is evident. Brain, cerebrospinal fluid (CSF), and plasma protein biomarkers with causal genetic evidence could represent potential drug targets. However, a comprehensive screen of the proteome has not yet been conducted.

Methods: We employed a three-pronged approach using Mendelian Randomization (MR) and Bayesian colocalization analysis. Firstly, we studied 608 brains, 214 CSF, and 612 plasma proteins as potential causal mediators of ADHD using MR analysis. Secondly, we analysed the consistency of the discovered biomarkers across three distinct subtypes of ADHD: childhood, persistent, and late-diagnosed ADHD. Finally, we extended our analysis to examine the correlation between identified biomarkers and Tourette syndrome and pervasive autism spectrum disorder (ASD), conditions often linked with ADHD. To validate the MR findings, we conducted sensitivity analysis. Additionally, we performed cell type analysis on the human brain to identify risk genes that are notably enriched in various brain cell types.

Findings: After applying Bonferroni correction, we found that the risk of ADHD was increased by brain proteins GMPPB, NAA80, HYI, CISD2, and HYI, TIE1 in CSF and plasma. Proteins GMPPB, NAA80, ICA1L, CISD2, TIE1, and RMDN1 showed overlapped loci with ADHD risk through Bayesian colocalization. Overexpression of GMPPB protein was linked to an increase in the risk for all three ADHD subtypes. While ICA1L provided protection against both ASD and ADHD, CISD2 increased the probability of both disorders. Cell-specific studies revealed that GMPPB, NAA80, ICA1L, and CISD2 were predominantly present on the surface of excitatory-inhibitory neurons.

Interpretation: Our comprehensive MR investigation of the brain, CSF, and plasma proteomes revealed seven proteins with causal connections to ADHD. Particularly, GMPPB and TIE1 emerged as intriguing targets for potential ADHD therapy.

Funding: This work was partly funded by the Key R & D Program of Zhejiang (T.L. 2022C03096); the National Natural Science Foundation of China Project (C.Z. 82001413); Postdoctoral Foundation of West China Hospital (C.Z. 2020HXBH163).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225168PMC
http://dx.doi.org/10.1016/j.ebiom.2024.105197DOI Listing

Publication Analysis

Top Keywords

csf plasma
12
gmppb naa80
12
adhd
11
mendelian randomization
8
brain cerebrospinal
8
cerebrospinal fluid
8
potential drug
8
drug targets
8
attention deficit
8
deficit hyperactivity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!