Natural products with anti-tumorigenesis potential targeting macrophage.

Phytomedicine

State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China. Electronic address:

Published: August 2024

Background: Inflammation is a risk factor for tumorigenesis. Macrophage, a subset of immune cells with high plasticity, plays a multifaceted role in this process. Natural products, which are bioactive compounds derived from traditional herbs or foods, have exhibited diverse effects on macrophages and tumorigenesis making them a valuable resource of drug discovery or optimization in tumor prevention.

Purpose: Provide a comprehensive overview of the various roles of macrophages in tumorigenesis, as well as the effects of natural products on tumorigenesis by modulating macrophage function.

Methods: A thorough literature search spanning the past two decades was carried out using PubMed, Web of Science, Elsevier, and CNKI following the PRISMA guidelines. The search terms employed included "macrophage and tumorigenesis", "natural products, macrophages and tumorigenesis", "traditional Chinese medicine and tumorigenesis", "natural products and macrophage polarization", "macrophage and tumor related microenvironment", "macrophage and tumor signal pathway", "toxicity of natural products" and combinations thereof. Furthermore, certain articles are identified through the tracking of citations from other publications or by accessing the websites of relevant journals. Studies that meet the following criteria are excluded: (1) Articles not written in English or Chinese; (2) Full texts were not available; (3) Duplicate articles and irrelevant studies. The data collected was organized and summarized based on molecular mechanisms or compound structure.

Results: This review elucidates the multifaceted effect of macrophages on tumorigenesis, encompassing process such as inflammation, angiogenesis, and tumor cell invasion by regulating metabolism, non-coding RNA, signal transduction and intercellular crosstalk. Natural products, including vitexin, ovatodiolide, ligustilide, and emodin, as well as herbal remedies, have demonstrated efficacy in modulating macrophage function, thereby attenuating tumorigenesis. These interventions mainly focus on mitigating the initial inflammatory response or modifying the inflammatory environment within the precancerous niche.

Conclusions: These mechanistic insights of macrophages in tumorigenesis offer valuable ideas for researchers. The identified natural products facilitate the selection of promising candidates for future cancer drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2024.155794DOI Listing

Publication Analysis

Top Keywords

natural products
20
macrophages tumorigenesis
16
modulating macrophage
8
tumorigenesis" "natural
8
"natural products
8
"macrophage tumor
8
tumorigenesis
7
natural
6
products
6
macrophage
5

Similar Publications

Background: We aimed to identify the central lifestyle, the most impactful among lifestyle factor clusters; the central health outcome, the most impactful among health outcome clusters; and the bridge lifestyle, the most strongly connected to health outcome clusters, across 29 countries to optimise resource allocation for local holistic health improvements.

Methods: From July 2020 to August 2021, we surveyed 16 461 adults across 29 countries who self-reported changes in 18 lifestyle factors and 13 health outcomes due to the pandemic. Three networks were generated by network analysis for each country: lifestyle, health outcome, and bridge networks.

View Article and Find Full Text PDF

Managing diabetic wounds is a significant challenge for healthcare professionals since severe complications and delayed recovery greatly impact the patients' quality of life. This article aimed to explore various factors affecting diabetic wound healing, the mechanism of wound healing, and potential natural products having wound healing capability. It focuses on mechanisms of action and the therapeutic effectiveness of the compounds employed in the management of diabetic wounds.

View Article and Find Full Text PDF

Drug delivery systems loaded with plant-derived natural products for dental caries prevention and treatment.

J Mater Chem B

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.

Dental caries, driven by dysbiosis in oral flora and acid accumulation, pose a significant threat to oral health. Traditional methods of managing dental biofilms using broad-spectrum antimicrobials and fluoride face limitations such as microbial resistance. Natural products, with their antimicrobial properties, present a promising solution for managing dental caries, yet their clinical application faces significant challenges, including low bioavailability, variable efficacy, and patient resistance due to sensory properties.

View Article and Find Full Text PDF

Diastereoselective Construction of Bridged Azabicyclo[3.2.1]octane via Copper-Catalyzed Formal [4 + 3] Cycloaddition.

J Org Chem

January 2025

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China.

A novel copper-catalyzed formal diastereoselective [4 + 3] cycloaddition of 2-arylaziridines and 2-substituted cyclopentadiene was developed. This transformation provided an efficient protocol for the assembly of a highly strained bridged azabicyclo[3.2.

View Article and Find Full Text PDF

A Facile Approach to Tetracyclic Indolines: Highly Diastereoselective [4+2] Annulation of Indoles with Bicyclic N-Substituted Cyclobutanes.

J Org Chem

January 2025

Chang-Kung Chuang Institute, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

A new stereoselective [4+2] annulation method for constructing tetracyclic indolines by reacting indoles with bicyclic N-substituted cyclobutanes has been developed. Using Sc(OTf) as a catalyst, a series of tetracyclic indolines with four continued stereogenic carbon centers have been obtained in ≤86% yields as single diastereomers. This reaction offers an accessible way for the rapid construction of the core structures of biologically active natural products like paucidirinine, deethylibophyllidine, and ibophyllidine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!