Fe doping enhanced Cr(VI) adsorption efficiency of cerium-based adsorbents: Adsorption behaviors and inner removal mechanisms.

J Colloid Interface Sci

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, College of Environment and Safety Engineering, Qingdao 266042, PR China. Electronic address:

Published: November 2024

Cerium-based adsorbents possessed unique advantages of valence variability and abundant oxygen vacancies in hexavalent chromium (Cr(VI)) adsorption, but high cost and unstable properties restricted their application in Cr(VI) contained wastewater treatment. Herein, a series of bimetallic adsorbents with different cerium/iron ratios (CeFe@C) were prepared by adding inexpensive Fe into Ce-based adsorbents (Ce@C), and the effect of Fe doping on adsorption properties of Ce@C for Cr(VI) was investigated thoroughly. Compared with pristine Ce@C, CeFe@C exhibited excellent removal performance for Cr(VI), and the improved maximum adsorption capacity reached 75.11 mg/g at 25℃. Benefiting from Fe doping, CeFe@C had good regeneration property, with only 25 % decrease after five adsorption-desorption cycles. Contents of trivalent cerium (Ce(III)) and oxygen vacancies (O) in bimetallic adsorbents were positively correlated with divalent iron (Fe(II)) doping, indicating that the formation of Ce(III) and surface defects on Ce@C could be effectively regulated by Fe doping. Density functional theory (DFT) calculation results further proved that the doped Fe enhanced the electron transfer effectively and lowered the energy barriers of Cr(VI) adsorption onto Ce@C surface, strengthening the reduction and complexation to Cr(VI). This study provides new insights for improving the Cr(VI) removal performance by modified Ce-based adsorbents, and further promotes the utilization potentiality of low-cost and low-toxicity Ce-based adsorbents in Cr(VI)-containing wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.06.036DOI Listing

Publication Analysis

Top Keywords

crvi adsorption
12
ce-based adsorbents
12
crvi
8
cerium-based adsorbents
8
oxygen vacancies
8
wastewater treatment
8
bimetallic adsorbents
8
removal performance
8
adsorbents
7
adsorption
6

Similar Publications

Nano-Fibrillated Bacterial Cellulose Nanofiber Surface Modification with EDTA for the Effective Removal of Heavy Metal Ions in Aqueous Solutions.

Materials (Basel)

January 2025

Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan.

Nano-fibrillated bacterial cellulose (NFBC) has very long fibers (>17 μm) with diameters of approximately 20 nm. Hence, they have a very high aspect ratio and surface area. The high specific surface area of NFBC can potentially be utilized as an adsorbent.

View Article and Find Full Text PDF

Nanoscale Fe(0)-zeolite composite derived from coal bottom ash for efficient treatment of Cr(VI)-contaminated groundwater: Unveiling the importance of locations for surface-bound Fe(II) and Fe(0) passivation products.

J Hazard Mater

January 2025

Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Environmental Engineering, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:

The synthesis of coal bottom ash-induced zeolite (Si-Al material) has been widely reported; however, the selective recovery of the three main elements, viz., Si, Al, and Fe, from coal bottom ash for the synthesis of reactive adsorbents has not yet been reported. In this study, we separated the magnetic and non-magnetic fractions of coal bottom ash to selectively recover Fe and Si-Al for synthesizing nanoscale zero-valent iron@zeolite (NZVI@ZBA) composites with uniform formation of Fe(0) nanoparticles on the ZBA surface.

View Article and Find Full Text PDF

Environmental concerns are driving the development of eco-friendly and effective methods for contaminant monitoring and remediation. In this study, a lanthanide porphyrin-based MOF with dual fluorescence sensing and photocatalytic properties was synthesized and applied for the detection and combined removal of Cr(VI) and ciprofloxacin (CIP). Using different excitation wavelengths, the material exhibited selective detection of Cr(VI) via fluorescence quenching and CIP through fluorescence enhancement.

View Article and Find Full Text PDF

A novel adsorbent ZnAl-LDHs/SiO (ZA/SiO) was prepared by blending urea mixture of ZnSO and Al(SO) while using SiO as a support form. The adsorption properties of ZA/SiO for the removal of toxic metal ions (Cu(II) and Cr(VI)) from water were evaluated. By batch experiment method to investigate the ZA/SiO adsorption of Cu(II) and Cr(VI) solution treatment effect.

View Article and Find Full Text PDF

Insight into migration of Cr(VI) in self-hardening slurry materials for trench cutoff wall.

Environ Res

January 2025

Zijin School of Geology and Mining, Fuzhou University, Fuzhou, 350108, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China. Electronic address:

The migration and immobilization of heavy metals in soil and groundwater pose significant environmental challenges, particularly in the context of Cr(VI), a highly toxic and mobile contaminant. Self-hardening slurry materials, commonly used for trench cutoff walls, have gained great attention due to their potential for pollutant containment. However, the relationship between their adsorption properties and pollutant diffusion behaviors remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!