Gasdermins are membrane pore-forming proteins that cause pyroptosis, an inflammatory cell death in which cells burst and release cytokines, chemokines, and other host alarm signals, such as ATP and HMGB1, which recruit and activate immune cells at sites of infection and danger. There are five gasdermins in humans - gasdermins A to E. Pyroptosis was first described in myeloid cells and mucosal epithelia, which express gasdermin D and activate it when cytosolic sensors of invasive infection or tissue damage assemble into large macromolecular structures, called inflammasomes. Inflammasomes recruit and activate inflammatory caspases (caspase 1, 4, 5, and 11), which cut gasdermin D to remove an inhibitory C-terminal domain, allowing the N-terminal domain to bind to membrane acidic lipids and oligomerize into pores. Recent studies have identified inflammasome-independent proteolytic pathways that activate gasdermin D and the other gasdermins. Here, we review inflammasome-independent pyroptosis pathways and what is known about their role in normal physiology and disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.coi.2024.102432 | DOI Listing |
J Cancer
January 2025
Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
Absence in melanoma 2 (AIM2) protein functions as a double-stranded DNA sensor and is critical for host defense against intracellular bacterial and viral pathogens. Recent research has highlighted the significance of AIM2 in the pathogenesis of diverse malignancies. Through its recognition of foreign or intracellular dsDNA, AIM2 triggers inflammasome activation, resulting in the release of pro-inflammatory cytokines such as IL-1β, IL-18, and induction of pyroptosis.
View Article and Find Full Text PDFKidney Dis (Basel)
October 2024
Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.
Background: The NLRP3 inflammasome is a cytoplasmic polymeric protein complex composed of the cytoplasmic sensor NLRP3, the apoptosis-related spot-like protein ASC, and the inflammatory protease caspase-1. NLRP3 activates and releases IL-1β through classical pathways, and IL-18 mediates inflammation and activates gasdermin-D protein to induce cellular pyroptosis. Numerous studies have also emphasized the non-classical pathway activated by the NLRP3 inflammasome in chronic kidney disease (CKD) and the inflammasome-independent function of NLRP3.
View Article and Find Full Text PDFSci Adv
July 2024
Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA.
Pathogen infection of host cells triggers an inflammatory cell death termed pyroptosis via activation of inflammatory caspases. However, blockade of immune signaling kinases by the virulence factor YopJ triggers cell death involving both apoptotic caspase-8 and pyroptotic caspase-1. While caspase-1 is normally activated within inflammasomes, -induced caspase-1 activation is independent of known inflammasome components.
View Article and Find Full Text PDFCurr Opin Immunol
June 2024
Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Gasdermins are membrane pore-forming proteins that cause pyroptosis, an inflammatory cell death in which cells burst and release cytokines, chemokines, and other host alarm signals, such as ATP and HMGB1, which recruit and activate immune cells at sites of infection and danger. There are five gasdermins in humans - gasdermins A to E. Pyroptosis was first described in myeloid cells and mucosal epithelia, which express gasdermin D and activate it when cytosolic sensors of invasive infection or tissue damage assemble into large macromolecular structures, called inflammasomes.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
April 2024
Facultad de Medicina, Universidad Autónoma de Guerrero, Laboratorio de Investigación Clínica, Av. Solidaridad S/N, Colonia Hornos Insurgentes, cp 39300, Acapulco, Guerrero México.
In recent decades, extraordinary attention has been devoted to cell death pathways principally because of multifaceted regulatory roles in normal developmental and pathophysiological processes. The removal of functionally defective, infected or potentially malignant cells is regulated by programmed cell death (PCD) cascades. Pyroptotic cell death is a highly complicated pro-inflammatory form of cell death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!