Enhancing and flexibly controlling the Goos-Hänchen (GH) shift directly is a significant challenge. Here, we report a tunable giant GH shift in a Au-ReS-graphene heterostructure. The GH shift of this heterostructure demonstrates strong anisotropy and a unique "sign inversion" feature as the graphene reaches a specific thickness. Flexible control and enhancement of the GH shift to the centimeter scale can be achieved by simply rotating the crystallization direction of the heterostructure. Utilizing this feature, we designed an anisotropic refractive index sensor with a high sensitivity of 1.31 × 10µm/RIU. This marks an order of magnitude improvement over previous research and introduces a rotation-dependent sensitivity adjustment feature. The tunable giant GH shift provides a promising approach for future designs of optical sensing and modulation devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.528817DOI Listing

Publication Analysis

Top Keywords

tunable giant
12
goos-hänchen shift
8
shift au-res-graphene
8
au-res-graphene heterostructure
8
giant shift
8
shift
6
giant goos-hänchen
4
heterostructure
4
heterostructure enhancing
4
enhancing flexibly
4

Similar Publications

Phase Coexistence Induced Giant Dielectric Tunability and Electromechanical Response in PbZrO Epitaxial Thin Films.

Small

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

PbZrO (PZO) thin films, as a classic antiferroelectric material, have attracted tremendous attention for their excellent dielectric, electromechanical, and thermal switching performances. However, several fundamental questions remain unresolved, particularly the existence of an intermediate phase during the transition from the antiferroelectric (AFE) to ferroelectric (FE) state. Here, a phase coexistence configuration of an orthorhombic AFE phase and a tetragonal-like (T-like) phase is reported in epitaxial antiferroelectric PZO thin films, with thickness ranging from 16 to 110 nm.

View Article and Find Full Text PDF

Advancing Membrane Biology: Single-Molecule Approaches Meet Model Membrane Systems.

BMB Rep

December 2024

Department of Physics, POSTECH, Pohang, Republic of Korea.

Model membrane systems have emerged as essential platforms for investigating membrane-associated processes in controlled environments, mimicking biological membranes without the complexity of cellular systems. However, integrating these model systems with single-molecule techniques remains challenging due to the fluidity of lipid membranes, including undulations and the lateral mobility of lipids and proteins. This mini-review explores the evolution of various model membranes ranging from black lipid membranes to nanodiscs and giant unilamellar vesicles as they adapt to accommodate electrophysiology, force spectroscopy, and fluorescence microscopy.

View Article and Find Full Text PDF

Giant Ultrabroadband Bulk Photovoltaic Effect Engendered by Two-Photon Absorption in α-InSe for Chiral Terahertz Wave Generation.

Adv Mater

December 2024

Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China.

Bulk photovoltaic effect (BPVE) can break the Shockley-Queisser limit by leveraging the inherent asymmetry of crystal lattice without a junction. However, this effect is mainly confined to UV-vis spectrum due to the wide-bandgap nature of traditional ferroelectric materials, thereby limiting the exploration of the infrared light-driven efficient BPVE. Herein, giant two-photon absorption (TPA) driven BPVE is uncovered from visible to infrared in ferroelectric α-InSe utilizing wavelength-tunable terahertz (THz) emission spectroscopy.

View Article and Find Full Text PDF

Quasi-BICs enhanced second harmonic generation from WSe monolayer.

Nanophotonics

August 2024

College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.

Quasi-bound states in the continuum (quasi-BICs) offer unique advantages in enhancing nonlinear optical processes and advancing the development of active optical devices. Here, the tunable robust quasi-BICs resonances are experimentally achieved through the engineering of multiple-hole Si-metasurface. Notably, the quasi-BICs mode exhibits flat bands with minimal dispersion at a wide range of incident angles, as demonstrated by the angle-resolved spectroscopy measurements.

View Article and Find Full Text PDF

Intersubband transitions in semiconductor heterostructures offer a way to achieve large and designable nonlinearities with dynamic modulation of intersubband energies through the Stark effect. One promising approach for incorporating these nonlinearities into free space optics is a nonlinear polaritonic metasurface, which derives resonant coupling between intersubband nonlinearities and optical modes in nanocavities. Recent work has shown efficient frequency mixing at low pumping intensities, with the ability to electrically tune the phase, amplitude, and spectral peak of it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!