d-Pinitol (DP) is primarily found in , which has been shown to have hypoglycemic and protective effects on target organs. However, the mechanism of DP in treating diabetic sarcopenia (DS) is still unclear. To explore the underlying mechanism of DS and the protective targets of DP by high-throughput analysis of 16S rRNA gene, metabolome, and the proteome. Streptozotocin-induced SAMP8 mice were intragastrically administrated DP (150 mg/kg) for 8 weeks. Fecal 16S rRNA gene sequencing and gastrocnemius muscle metabolomic and proteomic analyses were completed to investigate the gut-muscle axis interactions. DP significantly alleviated the muscle atrophy in diabetic mice. Dysfunction of the gut microbiota was observed in the DS mice. DP significantly reduced the Parabacteroides, Akkermansia, and Enterobacteriaceae, while it increased Lachnospiraceae_NK4A136. Metabolome and proteome revealed that 261 metabolites and 626 proteins were significantly changed in the gastrocnemius muscle of diabetic mice. Among these, DP treatment restored 44 metabolites and 17 proteins to normal levels. Functional signaling pathways of DP-treated diabetic mice included nucleotide metabolism, β-alanine, histidine metabolism, ABC transporters, and the calcium signaling pathway. We systematically explored the molecular mechanism of DS and the protective effect of DP, providing new insights that may advance the treatment of sarcopenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c03929 | DOI Listing |
Brain Commun
January 2025
Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 17165, Sweden.
Parkinson's disease is primarily marked by mitochondrial dysfunction and metabolic abnormalities. We recently reported that the combined metabolic activators improved the immunohistochemical parameters and behavioural functions in Parkinson's disease and Alzheimer's disease animal models and the cognitive functions in Alzheimer's disease patients. These metabolic activators serve as the precursors of nicotinamide adenine dinucleotide and glutathione, and they can be used to activate mitochondrial metabolism and eventually treat mitochondrial dysfunction.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
Advancements in bioinformatic tools and breakthroughs in high throughput RNA sequencing have unveiled the potential role of non-coding RNAs in influencing the overall expression of disease-responsive genes. Owing to the increasing need to develop resilient crop varieties against environmental constraints, our study explores the functional relationship of various non-coding RNAs in wheat during leaf rust pathogenesis. MicroRNAs (miRNAs) and circular RNAs (circRNAs) were retrieved from SAGE and RNA-Seq libraries, respectively, in the susceptible (HD2329) and resistant (HD2329 + Lr28) wheat Near-Isogenic Lines (NILs).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy.
Trapped ion mobility spectrometry (TIMS) using parallel accumulation serial fragmentation (PASEF) is an advanced analytical technique that offers several advantages in mass spectrometry (MS)-based lipidomics. TIMS provides an additional dimension of separation to mass spectrometry and accurate collision cross-section (CCS) measurements for ions, aiding in the structural characterization of molecules. This is especially valuable in lipidomics for identifying and distinguishing isomeric or structurally similar compounds.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute for Biomedicine, Eurac Research, Bolzano, Italy.
Metabolomics data analysis includes, next to the preprocessing, several additional repetitive tasks that can however be heavily dataset dependent or experiment setup specific due to the vast heterogeneity in instrumentation, protocols, or also compounds/samples that are being measured. To address this, various toolboxes and software packages in Python or R have been and are being developed providing researchers and analysts with bioinformatic/chemoinformatic tools to create their own workflows tailored toward their specific needs. This chapter presents tools and example workflows for common tasks focusing on the functionality provided by R packages developed as part of the RforMassSpectrometry initiative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!