Background: There are a wide range of potential adverse health effects, ranging from headaches to cardiovascular disease, associated with long-term negative emotions and chronic stress. Because many indicators of stress are imperceptible to observers, the early detection of stress remains a pressing medical need, as it can enable early intervention. Physiological signals offer a noninvasive method for monitoring affective states and are recorded by a growing number of commercially available wearables.
Objective: We aim to study the differences between personalized and generalized machine learning models for 3-class emotion classification (neutral, stress, and amusement) using wearable biosignal data.
Methods: We developed a neural network for the 3-class emotion classification problem using data from the Wearable Stress and Affect Detection (WESAD) data set, a multimodal data set with physiological signals from 15 participants. We compared the results between a participant-exclusive generalized, a participant-inclusive generalized, and a personalized deep learning model.
Results: For the 3-class classification problem, our personalized model achieved an average accuracy of 95.06% and an F-score of 91.71%; our participant-inclusive generalized model achieved an average accuracy of 66.95% and an F-score of 42.50%; and our participant-exclusive generalized model achieved an average accuracy of 67.65% and an F-score of 43.05%.
Conclusions: Our results emphasize the need for increased research in personalized emotion recognition models given that they outperform generalized models in certain contexts. We also demonstrate that personalized machine learning models for emotion classification are viable and can achieve high performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11127131 | PMC |
http://dx.doi.org/10.2196/52171 | DOI Listing |
Microbiome
January 2025
Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
Background: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transformations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely been unexplored.
View Article and Find Full Text PDFCrit Care
January 2025
División de Terapia Intensiva, Hospital Juan A. Fernández, Buenos Aires, Argentina.
The advancements in cardiovascular imaging over the past two decades have been significant. The miniaturization of ultrasound devices has greatly contributed to their widespread adoption in operating rooms and intensive care units. The integration of AI-enabled tools has further transformed the field by simplifying echocardiographic evaluations and enhancing the reproducibility of hemodynamic measurements, even for less experienced operators.
View Article and Find Full Text PDFBiomark Res
January 2025
Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, P.R. China.
Background: Disease progression within 24 months (POD24) significantly impacts overall survival (OS) in patients with follicular lymphoma (FL). This study aimed to develop a robust predictive model, FLIPI-C, using a machine learning approach to identify FL patients at high risk of POD24.
Methods: A cohort of 1,938 FL patients (FL1-3a) from seventeen centers nationwide in China was randomly divided into training and internal validation sets (2:1 ratio).
J Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFHereditas
January 2025
Emergency Department, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang Province, China.
Endometriosis is a complex gynecological condition characterized by abnormal immune responses. This study aims to explore the immunomodulatory effects of monoterpene glycosides from Paeonia lactiflora on endometriosis. Using the ssGSEA algorithm, we assessed immune cell infiltration levels between normal and endometriosis groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!