Ultrahigh Electrobending Deformation in Lead-Free Piezoelectric Ceramics via Defect Concentration Gradient Design.

Adv Mater

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

Published: August 2024

Recent breakthroughs in defect-engineered lead-free piezoelectric ceramics have reported remarkable electrostrain values, surpassing the limit of lattice distortion. This has aroused wide concern on bending deformation and the associated underlying mechanism. Herein, via designing lead-free piezoelectric ceramics with varying volatilization characteristics, it is uncovered that the ultrahigh electrobending deformation is primarily attributed to a large strain gradient induced by unevenly distributed defect dipoles. In 0.5 mm thick Sr/Sn co-doped potassium sodium niobate ceramics featuring volatile K/Na elements, the inherent bipolar electrostrain value can reach 0.3% at 20 kV cm due to the existence of defect dipoles, while the gradient distribution of defect dipole generates significant bending displacement, amplifying apparent electrostrain value to 1.1%. Notably, nonvolatile BaTiO ceramic with homogeneous defect dipole distribution does not present electrobending. Of particular interest is that the electrobending phenomenon can be observed through introducing a defect dipole gradient into barium titanate ceramic. A monolayer ceramic with defect dipole gradient can generate large tip displacement (±1.5 mm) in cantilever structure, demonstrating its promising potential in precise positioning. This study delves into the underlying mechanism driving electrobending deformation and its impact on the apparent electrostrain measurement in defect-engineered piezoelectric ceramics, providing fresh perspectives for the development of piezoelectric bending actuators.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202404682DOI Listing

Publication Analysis

Top Keywords

piezoelectric ceramics
16
defect dipole
16
electrobending deformation
12
lead-free piezoelectric
12
ultrahigh electrobending
8
underlying mechanism
8
defect dipoles
8
apparent electrostrain
8
dipole gradient
8
defect
7

Similar Publications

Bismuth-layered ferroelectric nanomaterials exhibit great potential for piezo-photocatalysis. However, a major challenge lies in the difficulty of recovering the catalytic powders, raising concerns regarding secondary pollution of water. In this work, a novel hierarchical porous ferroelectric ceramic containing {110} surface-exposed BiNdTiO (BIT-Nd) nanosheet arrays is grown on a porous ceramic matrix for efficient and recyclable piezo-photocatalysis.

View Article and Find Full Text PDF

For those piezoelectric materials that operate under high-power conditions, the piezoelectric and dielectric properties obtained under small signal conditions cannot be directly applied to high-power transducers. There are three mainstream high-power characterization methods: the constant voltage method, the constant current method, and the transient method. In this study, we developed and verified a combined impedance method that integrated the advantages of the constant voltage and current methods, along with an improved transient method, for high-power testing of PZT-5H piezoelectric ceramics.

View Article and Find Full Text PDF

Ultrahigh piezoelectric performances of (K,Na)NbO based ceramics enabled by structural flexibility and grain orientation.

Nat Commun

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

(K,Na)NbO-based ceramics are deemed among the most promising lead-free piezoelectric materials, though their overall piezoelectric performance still lags behind the mainstream lead-containing counterparts. Here, we achieve an ultrahigh piezoelectric charge coefficient d ∼ 807 pC·N, along with a high longitudinal electromechanical coupling factor (k ∼ 88%) and Curie temperature (T ∼ 245 °C) in the (K,Na)(NbSb)O-BiNaZrO-BiFeO (KNN-xSb) system through structural flexibility and grain orientation strategies. Phenomenological models, phase field simulations and high-angle annular dark-field scanning transmission electron microscopy reveal that the structural flexibility originates from the high Coulomb force between K/Na ions and Sb ions in the KNN-xSb system, while the grain orientation promotes the displacement of B-site cations leveraging the engineered domain configuration.

View Article and Find Full Text PDF

Porous piezoelectric materials have attracted much interest in the fields of sensing and energy harvesting owing to their low dielectric constant, high piezoelectric voltage coefficient, and energy harvesting figure of merit. However, the introduction of porosity can decrease the piezoelectric coefficient, which restricts the enhancement of output current and power density. Herein, to overcome these challenges, an array-structured piezoelectric composite energy harvester with aligned porosity was constructed via a dual structure design strategy to enhance the output current and power density.

View Article and Find Full Text PDF

Investigation of a flat-type piezoelectric motor using in-plane vibrations.

Rev Sci Instrum

January 2025

School of Perceptual Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

This paper presents a flat-type piezoelectric motor utilizing in-plane vibration modes. Two piezoelectric ceramic plates in combination with a brass metal sheet were used to construct the stator. The superposition of two second order in-plane vibration modes can generate a traveling-wave inside the stator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!