Developmental anatomy of the thalamus, perinatal lesions, and neurological development.

Dev Med Child Neurol

Department for Developmental Origins of Disease/Brain Centre, Division Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands.

Published: January 2025

The thalamic nuclei develop before a viable preterm age. GABAergic neuronal migration is especially active in the third trimester. Thalamic axons meet cortical axons during subplate activation and create the definitive cortical plate in the second and third trimesters. Default higher-order cortical driver connections to the thalamus are then replaced by the maturing sensory networks, in a process that is driven by first-order thalamic neurons. Surface electroencephalographic activity, generated first in the subplate and later in the cortical plate, gradually show oscillations based on the interaction of the cortex with thalamus, which is controlled by the thalamic reticular nucleus. In viable newborn infants, in addition to sensorimotor networks, the thalamus already contributes to visual, auditory, and pain processing, and to arousal and sleep. Isolated thalamic lesions may present as clinical seizures. In addition to asphyxia and stroke, infection and network injury are also common. Cranial ultrasound can be used to classify neonatal thalamic injuries based on functional parcelling of the mature thalamus. We provide ample illustration and a detailed description of the impact of neonatal focal thalamic injury on neurological development, and discuss the potential for neuroprotection based on thalamocortical plasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/dmcn.15992DOI Listing

Publication Analysis

Top Keywords

neurological development
8
cortical plate
8
thalamic
7
thalamus
5
developmental anatomy
4
anatomy thalamus
4
thalamus perinatal
4
perinatal lesions
4
lesions neurological
4
development thalamic
4

Similar Publications

Anti-Amyloid Therapies for Alzheimer's Disease and Amyloid-Related Imaging Abnormalities: Implications for the Emergency Medicine Clinician.

Ann Emerg Med

January 2025

Departments of Emergency Medicine & Population Health, New York University Grossman School of Medicine, New York, NY; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY.

Alzheimer's disease is the neurodegenerative disorder responsible for approximately 60% to 70% of all cases of dementia and is expected to affect 152 million by 2050. Recently, anti-amyloid therapies have been developed and approved by the Food and Drug Administration as disease-modifying treatments given as infusions every 2 to 5 weeks for Alzheimer's disease. Although this is an important milestone in mitigating Alzheimer's disease progression, it is critical for emergency medicine clinicians to understand what anti-amyloid therapies are and how they work to recognize, treat, and mitigate their adverse effects.

View Article and Find Full Text PDF

Controlling hypertension has become an important issue in the elderly population in whom neurological comorbidities are highly prevalent. Most of the large-scale trials focusing on hypertension management in older populations have excluded patients with comorbid neurological disorders. However, this population requires special considerations, as the benefits of antihypertensive agents are mostly uncertain and there is a higher risk of adverse events.

View Article and Find Full Text PDF

Multi-channel spatio-temporal graph attention contrastive network for brain disease diagnosis.

Neuroimage

January 2025

College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China. Electronic address:

Dynamic brain networks (DBNs) can capture the intricate connections and temporal evolution among brain regions, becoming increasingly crucial in the diagnosis of neurological disorders. However, most existing researches tend to focus on isolated brain network sequence segmented by sliding windows, and they are difficult to effectively uncover the higher-order spatio-temporal topological pattern in DBNs. Meantime, it remains a challenge to utilize the structure connectivity prior in the DBNs analysis.

View Article and Find Full Text PDF

E3 ubiquitin ligase SYVN1 as a promising therapeutic target for diverse human diseases.

Pharmacol Res

January 2025

State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China. Electronic address:

Numerous studies conducted in recent years indicate that mammalian E3 ubiquitin ligases serve as key regulators in the maintenance of cellular homeostasis by targeting the ubiquitination of substrate proteins and activating downstream signaling pathways. SYVN1, an E3 ubiquitin ligase, is characterized by its significant functions in regulating various biological processes, including molecular mechanisms related to gene expression, signaling pathways, and cell death, among others. Consequently, SYVN1 plays a crucial role in both normal human physiology and the pathogenesis of various diseases, such as oncogenesis, cardiovascular disorders, immune regulation, skeletal anomalies, and neurological diseases.

View Article and Find Full Text PDF

As the clinical applicability of peripheral nerve stimulation (PNS) expands, the need for PNS-specific safety criteria becomes pressing. This study addresses this need, utilizing a novel machine learning and computational bio-electromagnetics modeling platform to establish a safety criterion that captures the effects of fields and currents induced on axons. Our approach is comprised of three steps: experimentation, model creation, and predictive simulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!