A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Illuminating the coevolution of photosynthesis and Bacteria. | LitMetric

Illuminating the coevolution of photosynthesis and Bacteria.

Proc Natl Acad Sci U S A

Department of Life Science and Biotechnology, The National Institute of Advanced Industrial Science and Technology, Ibaraki 305-0817, Japan.

Published: June 2024

AI Article Synopsis

  • The study explores how life utilizing light energy changed Earth's biology and carbon dynamics, highlighting the importance of photosynthesis in shaping today's biosphere.
  • It uses a comprehensive phylogenetic analysis of over 10,000 bacterial genomes to identify the evolutionary connections between bacteria, light metabolism, and carbon fixation.
  • The findings reveal that all current light-metabolizing organisms trace back to a common ancestor, an ancient non-oxygen-producing phototroph, and outline the evolution of light metabolism leading to the rise of oxygen-generating organisms and Cyanobacteria.

Article Abstract

Life harnessing light energy transformed the relationship between biology and Earth-bringing a massive flux of organic carbon and oxidants to Earth's surface that gave way to today's organotrophy- and respiration-dominated biosphere. However, our understanding of how life drove this transition has largely relied on the geological record; much remains unresolved due to the complexity and paucity of the genetic record tied to photosynthesis. Here, through holistic phylogenetic comparison of the bacterial domain and all photosynthetic machinery (totally spanning >10,000 genomes), we identify evolutionary congruence between three independent biological systems-bacteria, (bacterio)chlorophyll-mediated light metabolism (chlorophototrophy), and carbon fixation-and uncover their intertwined history. Our analyses uniformly mapped progenitors of extant light-metabolizing machinery (reaction centers, [bacterio]chlorophyll synthases, and magnesium-chelatases) and enzymes facilitating the Calvin-Benson-Bassham cycle (form I RuBisCO and phosphoribulokinase) to the same ancient Terrabacteria organism near the base of the bacterial domain. These phylogenies consistently showed that extant phototrophs ultimately derived light metabolism from this bacterium, the last phototroph common ancestor (LPCA). LPCA was a non-oxygen-generating (anoxygenic) phototroph that already possessed carbon fixation and two reaction centers, a type I analogous to extant forms and a primitive type II. Analyses also indicate chlorophototrophy originated before LPCA. We further reconstructed evolution of chlorophototrophs/chlorophototrophy post-LPCA, including vertical inheritance in Terrabacteria, the rise of oxygen-generating chlorophototrophy in one descendant branch near the Great Oxidation Event, and subsequent emergence of Cyanobacteria. These collectively unveil a detailed view of the coevolution of light metabolism and Bacteria having clear congruence with the geological record.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194577PMC
http://dx.doi.org/10.1073/pnas.2322120121DOI Listing

Publication Analysis

Top Keywords

light metabolism
12
geological record
8
bacterial domain
8
reaction centers
8
illuminating coevolution
4
coevolution photosynthesis
4
photosynthesis bacteria
4
bacteria life
4
life harnessing
4
light
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!