Shear forces affect self-assembly processes ranging from crystallization to fiber formation. Here, the effect of mild agitation on amyloid fibril formation was explored for four peptides and investigated in detail for A[Formula: see text]42, which is associated with Alzheimer's disease. To gain mechanistic insights into the effect of mild agitation, nonseeded and seeded aggregation reactions were set up at various peptide concentrations with and without an inhibitor. First, an effect on fibril fragmentation was excluded by comparing the monomer-concentration dependence of aggregation kinetics under idle and agitated conditions. Second, using a secondary nucleation inhibitor, Brichos, the agitation effect on primary nucleation was decoupled from secondary nucleation. Third, an effect on secondary nucleation was established in the absence of inhibitor. Fourth, an effect on elongation was excluded by comparing the seeding potency of fibrils formed under idle or agitated conditions. We find that both primary and secondary nucleation steps are accelerated by gentle agitation. The increased shear forces facilitate both the detachment of newly formed aggregates from catalytic surfaces and the rate at which molecules are transported in the bulk solution to encounter nucleation sites on the fibril and other surfaces. Ultrastructural evidence obtained with cryogenic transmission electron microscopy and free-flow electrophoresis in microfluidics devices imply that agitation speeds up the detachment of nucleated species from the fibril surface. Our findings shed light on the aggregation mechanism and the role of detachment for efficient secondary nucleation. The results inform on how to modulate the relative importance of different microscopic steps in drug discovery and investigations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194593 | PMC |
http://dx.doi.org/10.1073/pnas.2322572121 | DOI Listing |
Phys Life Rev
December 2024
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation. Electronic address:
This review presents the current understanding of (i) spontaneous self-organization of spatial structures of protein molecules, and (ii) possible ways of chaperones' assistance to this process. Specifically, we overview the most important features of spontaneous folding of proteins (mostly, of the single-domain water-soluble globular proteins): the choice of the unique protein structure among zillions of alternatives, the nucleation of the folding process, and phase transitions within protein molecules. We consider the main experimental facts on protein folding, both in vivo and in vitro, of both kinetic and thermodynamic nature.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai, 400098, India. Electronic address:
The fibrillation of α-synuclein (α-Syn) is considered a major contributor to Parkinson's disease (PD). Recent therapeutic measures have focused on inhibiting the fibrillation of α-Syn using various small molecules. We report here the effects of two different hydroxycinnamic acids; chlorogenic acid and sinapic acid on α-Syn fibrillation and have also discussed the mechanistic insights into their mode of modulation.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
Cannabis smoke is a complex aerosol mixture, featuring characteristic monoterpenes and sesquiterpenes which are susceptible to reaction with ozone and other oxidants. These reactions form less-volatile species which can contribute to secondary organic aerosol (SOA) and ultrafine particle (UFP) formation. In this work, the reaction of ozone with cannabis smoke was observed in an environmental chamber.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200230, P. R. China.
Chirality evolution is ubiquitous and important in nature, but achieving it in artificial systems is still challenging. Herein, the chirality evolution of supramolecular helices based on l-phenylalanine derivative (LPF) and naphthylamide derivate (NDIAPY) is achieved by the strategy of electron transfer (ET) assisted secondary nucleation. ET from LPF to NDIAPY can be triggered by 5 s UV irradiation on left-handed LPF-NDIAPY co-assemblies, leading to NDIAPY radical anions and partial disassembly of the helices.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!