AI Article Synopsis

  • The endometrial receptivity is essential for embryo implantation and successful pregnancy, making it a key focus in fertility treatments like IVF.
  • Long non-coding RNAs (lncRNAs) are important gene regulators that influence endometrial receptivity, with numerous lncRNAs identified in humans and other species that could modulate this process.
  • Future research should investigate the potential of lncRNAs as targets for therapy and as biomarkers to enhance endometrial receptivity in fertility treatments.

Article Abstract

The development of endometrial receptivity is crucial for successful embryo implantation and the initiation of pregnancy. Understanding the molecular regulatory processes that transform the endometrium into a receptive phase is essential for enhancing implantation rates in fertility treatments, such as in vitro fertilization (IVF). Long non-coding RNAs (lncRNAs) play a pivotal role as gene regulators and have been examined in the endometrium. This review offers current insights into the role of lncRNAs in regulating endometrial receptivity. Considering the significant variation in endometrial remodeling among species, we summarize the key events in the human endometrial cycle and discuss the identified lncRNAs in both humans and other species, which may play a crucial role in establishing receptivity. Notably, there are 742 lncRNAs in humans and 4438 lncRNAs that have the potential to modulate endometrial receptivity. Additionally, lncRNAs regulating matrix metalloproteinases (MMPs) and Let-7 have been observed in both species. Future investigations should explore the potential of lncRNAs as therapeutic targets and/or biomarkers for diagnosing and improving endometrial receptivity in human fertility therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349255PMC
http://dx.doi.org/10.5935/1518-0557.20240038DOI Listing

Publication Analysis

Top Keywords

endometrial receptivity
20
lncrnas
8
embryo implantation
8
lncrnas regulating
8
lncrnas humans
8
endometrial
7
receptivity
6
lncrnas regulation
4
regulation endometrial
4
receptivity embryo
4

Similar Publications

Background: One potential cause of implantation failure is abnormal endometrial receptivity, and how to objectively evaluate endometrial receptivity has been a matter of great concern. Endometrial receptivity analysis (ERA), a next-generation sequencing-based test that assesses endometrial gene expression, may be valuable in predicting endometrial receptivity, but whether ERA improves pregnancy outcomes in patients with recurrent implantation failure (RIF) is currently controversial. The purpose of this study was to investigate the effect of ERA on pregnancy outcomes in patients with RIF.

View Article and Find Full Text PDF

Endometrial injury caused by repeated uterine procedures, infections, inflammation, or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration, thereby diminishing endometrial receptivity and evidently lowering the live birth, clinical pregnancy, and embryo implantation rates. Currently, safe and effective clinical treatment methods or gene-targeted therapies are unavailable, especially for severe endometrial injury. Umbilical cord mesenchymal stem cells and their extracellular vesicles are characterized by their simple collection, rapid proliferation, low immunogenicity, and tumorigenicity, along with their involvement in regulating angiogenesis, immune response, cell apoptosis and proliferation, inflammatory response, and fibrosis, Therefore, these cells and vesicles hold broad potential for application in endometrial repair.

View Article and Find Full Text PDF

Human embryo implantation: The complex interplay between endometrial receptivity and the microbiome.

J Reprod Immunol

January 2025

Chengdu Fifth People's Hospital, (School of Medical and Life Sciences/Affiliated Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine), Chengdu, China. Electronic address:

The endometrial and vaginal microbiota have co-evolved with the reproductive tract and play a key role in both health and disease. However, the difference between endometrial and vaginal microbiota, as well as their association with reproductive outcomes in women undergoing frozen embryo transfer, remains unclear. 120 women who underwent in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) and whole embryo freezing were enrolled.

View Article and Find Full Text PDF

Hypothyroidism causes ovarian dysfunction and infertility in women and animals and impairs the hypothalamic expression of kisspeptin (Kp). However, kisspeptin is also expressed in the genital system, and the lack of the Kp receptor (Kiss1r) in the uterus is linked to reduced implantation rates. This study investigated the impact of hypothyroidism on the uterine expression of Kp and Kiss1r in female rats throughout the estrous cycle and the associated changes in uterine activity modulators.

View Article and Find Full Text PDF

: Autologous platelet-rich plasma (PRP) transfusions are a relatively new treatment method used in different fields of medicine, including the field of reproductive medicine. One of the applications of these concentrated platelet infusions is the treatment of endometrial receptivity, which is a key factor for embryo implantation. There are implications that PRP infusions can lead to increased endometrial thickness, endometrial receptivity, and significantly elevated clinical pregnancy rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!