Few-shot object detection (FSOD) identifies objects from extremely few annotated samples. Most existing FSOD methods, recently, apply the two-stage learning paradigm, which transfers the knowledge learned from abundant base classes to assist the few-shot detectors by learning the global features. However, such existing FSOD approaches seldom consider the localization of objects from local to global. Limited by the scarce training data in FSOD, the training samples of novel classes typically capture part of objects, resulting in such FSOD methods being unable to detect the completely unseen object during testing. To tackle this problem, we propose an Extensible Co-Existing Attention (ECEA) module to enable the model to infer the global object according to the local parts. Specifically, we first devise an extensible attention mechanism that starts with a local region and extends attention to co-existing regions that are similar and adjacent to the given local region. We then implement the extensible attention mechanism in different feature scales to progressively discover the full object in various receptive fields. In the training process, the model learns the extensible ability on the base stage with abundant samples and transfers it to the novel stage of continuous extensible learning, which can assist the few-shot model to quickly adapt in extending local regions to co-existing regions. Extensive experiments on the PASCAL VOC and COCO datasets show that our ECEA module can assist the few-shot detector to completely predict the object despite some regions failing to appear in the training samples and achieve the new state-of-the-art compared with existing FSOD methods. Code is released at https://github.com/zhimengXin/ECEA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2024.3411771 | DOI Listing |
IEEE J Biomed Health Inform
October 2024
Neural Netw
December 2024
Department of Computer Science, University of Southern California, 3650 McClintock Avenue, Los Angeles, 90089, CA, USA. Electronic address:
Despite significant success of deep learning in object detection tasks, the standard training of deep neural networks requires access to a substantial quantity of annotated images across all classes. Data annotation is an arduous and time-consuming endeavor, particularly when dealing with infrequent objects. Few-shot object detection (FSOD) methods have emerged as a solution to the limitations of classic object detection approaches based on deep learning.
View Article and Find Full Text PDFIEEE Trans Image Process
October 2024
Few-shot object detection (FSOD) identifies objects from extremely few annotated samples. Most existing FSOD methods, recently, apply the two-stage learning paradigm, which transfers the knowledge learned from abundant base classes to assist the few-shot detectors by learning the global features. However, such existing FSOD approaches seldom consider the localization of objects from local to global.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
April 2024
Few-shot object detection (FSOD), which detects novel objects with only a few training instances, has recently attracted more attention. Previous works focus on making the most use of label information of objects. Still, they fail to consider the structural and semantic information of the image itself and solve the misclassification between data-abundant base classes and data-scarce novel classes efficiently.
View Article and Find Full Text PDFIEEE Trans Image Process
December 2022
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!