PExM: polyplex expansion microscopy for cell trafficking studies.

Nanoscale

Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017, Barcelona, Spain.

Published: June 2024

Nanomedicine is a field at the intersection of nanotechnology and medicine, promising due to its potential to revolutionize healthcare. Despite its long trajectory, there is still a long road ahead for its full development, and smart design of nanomedicines is still a challenge. Among other problems, this is due to the scarcity of tools available for the precise visualization and comprehension of nano-bio interactions, impeding progress towards the clinical phase. One of the developed tools that stands out to be a strong nanoscopy technique for studying nano-delivery systems within cellular environments is expansion microscopy (ExM). This technique was used for tissue and cell expansion and most recently for lipid molecule expansion inside cells. Herein, we present for the first time polyplex expansion microscopy (PExM); a comprehensive examination of ExM as an already developed technique, but adapted for expanding polymer based nanocarriers, in particular polyplexes within cells, allowing the analysis of their trafficking. With our method set up, PExM will be extensively used for the study of polyplex nanoparticle cell trafficking, becoming a high-resolution technique which can also be applied to primary amine containing polymeric nanoparticles without requiring expensive super-resolution microscopes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr00917gDOI Listing

Publication Analysis

Top Keywords

expansion microscopy
12
polyplex expansion
8
cell trafficking
8
expansion
5
pexm polyplex
4
microscopy cell
4
trafficking studies
4
studies nanomedicine
4
nanomedicine field
4
field intersection
4

Similar Publications

Human epidermal growth factor receptor 2 (HER2, also known as ERBB2) signaling promotes cell growth and differentiation, and is overexpressed in several tumor types, including breast, gastric and colorectal cancer. HER2-targeted therapies have shown clinical activity against these tumor types, resulting in regulatory approvals. However, the efficacy of HER2 therapies in tumors with HER2 mutations has not been widely investigated.

View Article and Find Full Text PDF

With the advancement of ecological and environmental protection construction, the research on the modification of expansive soil using environmentally friendly polymers can make up for the harm to the ecological environment caused by traditional modification. Mechanical and microscopic properties of modified expansive soils were analyzed through indoor tests. The results showed that the liquid limit and plasticity index decreased by 52.

View Article and Find Full Text PDF

mTor limits autophagy to facilitate cell volume expansion and rapid wound repair in Drosophila embryos.

Dev Cell

January 2025

Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada. Electronic address:

Embryonic wounds repair rapidly, with no inflammation or scarring. Embryonic wound healing is driven by collective cell movements facilitated by the increase in the volume of the cells adjacent to the wound. The mechanistic target of rapamycin (mTor) complex 1 (TORC1) is associated with cell growth.

View Article and Find Full Text PDF

Background: Renal fibrosis is strongly correlated with renal functional outcomes. Therefore, this is a significant finding in determining renal prognosis. There are various reports on the imaging evaluation of renal fibrosis, but these are not well established.

View Article and Find Full Text PDF

A fair comparison of multiple live cell cultures requires examining them under identical environmental conditions, which can only be done accurately if all cells are prepared simultaneously and studied at the same time and place. This contribution introduces a multiplexed lensless digital holographic microscopy system (MLS), enabling synchronous, label-free, quantitative observation of multiple live cell cultures with single-cell precision. The innovation of this setup lies in its ability to robustly compare the behaviour, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!