Assessing the Impact of Climate Change on Argyrotaenia sphaleropa (Meyrick, 1909) Voltinism: Implications for Fruit Production in Southern Brazil.

Neotrop Entomol

Graduate Program in Natural and Agricultural Ecosystems, Department of Agriculture, Biodiversity, and Forests, Federal University of Santa Catarina, Curitibanos, Santa Catarina, Brazil.

Published: August 2024

The leafroller Argyrotaenia sphaleropa (Meyrick) is an important pest of temperate fruits. Its biology and population dynamics are strongly influenced by temperature. In this context, this study aims to select a mathematical model that accurately describes the temperature-dependent development rate of A. sphaleropa and applies this model to predict the impact of climate change on the number of annual generations (voltinism) of the pest in southern Brazil. Nine mathematical models were employed to fit the species' developmental rate at different constant temperatures. Voltinism was projected using climate data from the current period (1994-2013) and projections for 2050 and 2070. The Brière-1 model (D(T) = aT(T-T)(T-T)) provided the best fit for the temperature-dependent developmental rate of A. sphaleropa. According to this model, the regions with the highest voltinism under current climatic conditions are the northern and central areas of Paraná, the western and northeastern regions of Santa Catarina, and northwestern Rio Grande do Sul. The model also predicts a rise in A. sphaleropa voltinism as a consequence of climate change, especially in the mountainous regions of Santa Catarina and Rio Grande do Sul, with projected increases of up to 25.1%. These regions encompass most areas where temperate fruits used as hosts by the leafroller are cultivated. This study represents a significant advancement in understanding the implications of global warming on A. sphaleropa voltinism and suggests that forthcoming climatic conditions will likely favor the species across much of southern Brazil.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13744-024-01167-0DOI Listing

Publication Analysis

Top Keywords

climate change
12
southern brazil
12
impact climate
8
argyrotaenia sphaleropa
8
sphaleropa meyrick
8
temperate fruits
8
rate sphaleropa
8
developmental rate
8
climatic conditions
8
regions santa
8

Similar Publications

Importance: Climate change can adversely affect mental health, but the association of ambient temperature with psychiatric symptoms remains poorly understood.

Objective: To assess the association of ambient temperature exposure with internalizing, externalizing, and attention problems in adolescents from 2 population-based birth cohorts in Europe.

Design, Setting, And Participants: This cohort study analyzed data from the Dutch Generation R Study and the Spanish INMA (Infancia y Medio Ambiente) Project.

View Article and Find Full Text PDF

With climate change causing more extreme weather events globally, climate scientists have argued that societies have three options: mitigation, adaptation or suffering. In recent years, devastating wildfires have caused significant suffering, yet the extent of this suffering has not been defined. To encapsulate this suffering, we determined impacts and effects of extreme wildfires through two systematic literature reviews.

View Article and Find Full Text PDF

The fate and degradation of organic matter in aquatic systems is a vital link in nutrient cycling and sedimentation processes influenced by exogenous and endogenous factors, such as inputs from upstream sources, sediment suspension, and the decomposition of aquatic organisms. The interplay of organic carbon, microbes, and environmental factors shapes the distribution and degradation of organic matter. Characterizing the source distribution of sedimentary organic matter in aquatic systems using novel proxies can unravel new insights into the mechanisms that control its dispersal, preservation and fate, which is essential to understanding the global carbon and nitrogen cycles.

View Article and Find Full Text PDF

The atmospheric dicarboxylic acids (DCAs) have a significant impact on the climate and indirectly affect human health, making them important organic substances. PM bound DCAs were analysed for Jorhat, India, 2019. In addition to the temporal variability, seasonal variation throughout the year and the impact of varying meteorological factors on DCAs concentration have also been studied.

View Article and Find Full Text PDF

Sorghum kernel composition is a crucial characteristic that determines its functional qualities. The total protein content of sorghum grain increases under drought stress, but starch, protein digestibility, and micronutrient contents decrease. Sorghum (Sorghum bicolor L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!