Identification of CaPCR1, an OFP gene likely involved in pointed versus concave fruit tip regulation in pepper (Capsicum annuum L.) using recombinant inbred lines.

Theor Appl Genet

National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.

Published: June 2024

CaPCR1 (Capana12g002165) was a candidate gene regulating fruit concave/pointed tip shape in pepper. The concave shape of the fruit tip in pepper plants is highly susceptible to drought and low temperature stresses, resulting in the appearance of a pointed tip fruit, which affects its commercial value. However, few studies on the process of fruit tip development and regulatory genes in pepper have been reported. Herein, the developmental process of the ovary before anthesis, especially changes in the shape of the ovary tip, was studied in detail. The results showed that the final fruit tip shape was consistent with the ovary tip shape before anthesis, and a concave tip shape gradually developed. F recombinant inbred lines (RILs) were constructed to map the genes regulating fruit tip shape through hybridization of the LRS and SBS pepper inbred lines. CaPCR1 (Capana12g002165), an OFP (OVATE Family Protein) family gene, was located in the candidate region on chr12. Three SNPs were found in the protein coding sequence of CaPCR1 between SBS and LRS, but only one SNP led to amino acid variation. Sequence variations, including base replacements, deletions and insertions, were also detected in the gene promoter region. The relative expression level of the CaPCR1 gene was significantly greater in the concave tip ovary than in the pointed tip ovary. qRT‒PCR analysis revealed that the CaPCR1 gene was expressed mainly in the gynoecium, placenta and green fruit pericarp, which was consistent with its function in ovary and fruit development. Taken together, these results suggested that CaPCR1 is a candidate gene involved in fruit tip shape determination in pepper.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-024-04675-0DOI Listing

Publication Analysis

Top Keywords

inbred lines
12
fruit shape
12
fruit
10
gene involved
8
recombinant inbred
8
lines capcr1
8
capcr1 capana12g002165
8
candidate gene
8
regulating fruit
8
shape
8

Similar Publications

Background: Mitochondrial transcription elongation factor (TEFM) is a recently discovered factor involved in mitochondrial DNA replication and transcription. Previous studies have reported that abnormal TEFM expression can disrupt the assembly of mitochondrial respiratory chain and thus mitochondrial function. However, the role of TEFM on Uterine corpus endometrial carcinoma (UCEC) progression remains unclear.

View Article and Find Full Text PDF

Drug addiction is a multifactorial syndrome in which genetic predispositions and exposure to environmental stressors constitute major risk factors for the early onset, escalation, and relapse of addictive behaviors. While it is well known that stress plays a key role in drug addiction, the genetic factors that make certain individuals particularly sensitive to stress and, thereby, more vulnerable to becoming addicted are unknown. In an effort to test a complex set of gene x environment interactions-specifically gene x chronic stress-here we leveraged a systems genetics resource: BXD recombinant inbred mice (BXD5, BXD8, BXD14, BXD22, BXD29, and BXD32) and their parental mouse lines, C57BL/6J and DBA/2J.

View Article and Find Full Text PDF

OsWRKY49 on qAT5 positively regulates alkalinity tolerance at the germination stage in Oryza sativa L. ssp. japonica.

Theor Appl Genet

December 2024

Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.

Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants. With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important.

View Article and Find Full Text PDF

Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries.

Toxins (Basel)

December 2024

Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.

The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.

View Article and Find Full Text PDF

Root-associated microbial diversity and metabolomics in maize resistance to stalk rot.

Front Microbiol

December 2024

State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China.

As one of the three major food crops in the world, maize plays a significant role in alleviating the food crisis. Maize stalk rot can reduce maize yield and mechanical harvesting efficiency. In addition, mycotoxins such as Deoxynivalenol (DON) and Zearalenone (ZEN) produced by maize stalk rot pathogens can also harm livestock and human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!