Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Selective capture of palladium (Pd) is one of the important works in science due to its high application and low content in the Earth's crust. To this end, we present herein a new Cu(I)-organic framework (ECUT-MOF-1) by introducing pyridine N active sites to chelate Pd(II). ECUT-MOF-1 demonstrated that the maximal adsorption capacity of Pd(II) was 350 mg/g in pH = 3 solution. In addition, kinetic analysis, cycle performance, selectivity, and adsorption mechanisms were also investigated. All of the results suggested its superior application in the recovery of Pd(II).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c02075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!