Access to DNA is the first level of control in regulating gene transcription, a control that is also critical for maintaining DNA integrity. Cellular senescence is characterized by profound transcriptional rearrangements and accumulation of DNA lesions. Here, we discovered an epigenetic complex between HDAC4 and HDAC1/HDAC2 that is involved in the erase of H2BK120 acetylation. The HDAC4/HDAC1/HDAC2 complex modulates the efficiency of DNA repair by homologous recombination, through dynamic deacetylation of H2BK120. Deficiency of HDAC4 leads to accumulation of H2BK120ac, impaired recruitment of BRCA1 and CtIP to the site of lesions, accumulation of damaged DNA and senescence. In senescent cells this complex is disassembled because of increased proteasomal degradation of HDAC4. Forced expression of HDAC4 during RAS-induced senescence reduces the genomic spread of γH2AX. It also affects H2BK120ac levels, which are increased in DNA-damaged regions that accumulate during RAS-induced senescence. In summary, degradation of HDAC4 during senescence causes the accumulation of damaged DNA and contributes to the activation of the transcriptional program controlled by super-enhancers that maintains senescence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317144PMC
http://dx.doi.org/10.1093/nar/gkae501DOI Listing

Publication Analysis

Top Keywords

h2bk120 acetylation
8
accumulation damaged
8
damaged dna
8
degradation hdac4
8
ras-induced senescence
8
dna
7
senescence
7
hdac4
6
hdac4 influences
4
influences dna
4

Similar Publications

Formaldehyde (FA) is a human carcinogen with ubiquitous environmental exposures and significant endogenous formation. Genotoxic activity of FA stems from its reactivity with DNA-NH groups. Histone lysines are another source of aldehyde-reactive amino groups in chromatin, however, chromatin/histone damage responses to FA and their biological significance are poorly understood.

View Article and Find Full Text PDF

Access to DNA is the first level of control in regulating gene transcription, a control that is also critical for maintaining DNA integrity. Cellular senescence is characterized by profound transcriptional rearrangements and accumulation of DNA lesions. Here, we discovered an epigenetic complex between HDAC4 and HDAC1/HDAC2 that is involved in the erase of H2BK120 acetylation.

View Article and Find Full Text PDF

Acetylation of histones and non-histone proteins is not a mere consequence of ongoing transcription.

Nat Commun

June 2024

Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.

In all eukaryotes, acetylation of histone lysine residues correlates with transcription activation. Whether histone acetylation is a cause or consequence of transcription is debated. One model suggests that transcription promotes the recruitment and/or activation of acetyltransferases, and histone acetylation occurs as a consequence of ongoing transcription.

View Article and Find Full Text PDF

Live Cell Synthetic Histone Acetylation by Chemical Catalyst.

Methods Mol Biol

September 2022

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

Posttranslational modifications (PTMs) of histones, such as lysine acetylation and ubiquitination, regulate chromatin structure and gene expression. In living organisms, histone PTMs are catalyzed by histone-modifying enzymes. Here, we describe an entirely chemical method to introduce histone modifications in living cells without genetic manipulation.

View Article and Find Full Text PDF

Histone PTM Crosstalk Stimulates Dot1 Methyltransferase Activity.

Trends Biochem Sci

July 2021

Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA 02115, USA. Electronic address:

Valencia-Sánchez et al. have demonstrated that two histone post-translational modifications (PTMs) - H4K16 acetylation (H4K16ac) and H2BK120 ubiquitination (H2Bub) - enhance the methylation of H3K79 (H3K79me) by Dot1. This breakthrough indicates crosstalk between H4Kac/H2Bub/H3K79me and may improve our understanding of the role that Dot1/Dot1L plays in developmental processes and disease, including MLL1/KMT2A(MLL-r) leukemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!