A basic assumption underlying induced pluripotent stem cell (iPSC) models of neurodegeneration is that disease-relevant pathologies present in brain tissue are also represented in donor-matched cells differentiated from iPSCs. However, few studies have tested this hypothesis in matched iPSCs and neuropathologically characterized donated brain tissues. To address this, we assessed iPSC-neuron production of β-amyloid (Aβ) Aβ40, Aβ42, and Aβ43 in 24 iPSC lines matched to donor brains with primary neuropathologic diagnoses of sporadic AD (sAD), familial AD (fAD), control, and other neurodegenerative disorders. Our results demonstrate a positive correlation between Aβ43 production by fAD iPSC-neurons and Aβ43 accumulation in matched brain tissues but do not reveal a substantial correlation in soluble Aβ species between control or sAD iPSC-neurons and matched brains. However, we found that the ApoE4 genotype is associated with increased Aβ production by AD iPSC-neurons. Pathologic tau phosphorylation was found to be increased in AD and fAD iPSC-neurons compared to controls and positively correlated with the relative abundance of longer-length Aβ species produced by these cells. Taken together, our results demonstrate that sAD-predisposing genetic factors influence iPSC-neuron phenotypes and that these cells are capturing disease-relevant and patient-specific components of the amyloid cascade.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333826PMC
http://dx.doi.org/10.1093/jnen/nlae053DOI Listing

Publication Analysis

Top Keywords

tau phosphorylation
8
neuropathologically characterized
8
matched donor
8
donor brains
8
brain tissues
8
fad ipsc-neurons
8
aβ species
8
ipsc-neurons
5
matched
5
β-amyloid species
4

Similar Publications

Introduction: Sleep disturbances are associated with Alzheimer's disease (AD) and Alzheimer's disease and related dementias (ADRD), but the relationship between sleep architecture, particularly rapid eye movement (REM) sleep, and AD/ADRD biomarkers remains unclear.

Methods: We enrolled 128 adults (64 with Alzheimer's disease, 41 with mild cognitive impairment [MCI], and 23 with normal cognition [NC]), mean age 70.8 ± 9.

View Article and Find Full Text PDF

Tau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease.

View Article and Find Full Text PDF

According to epidemiological studies, diabetes is more common in patients with AD, which suggests that diabetes is a significant risk factor for AD. Accelerating brain cell degeneration, worsening cognitive decline, and increasing susceptibility to AD can be attributed to pathogenic mechanisms linked to diabetes, such as impaired insulin signaling in the brain, neuroinflammation, oxidative stress, mitochondrial dysfunction, and vascular impairment. These factors can also lead to the accumulation of β-amyloid and tau protein phosphorylation.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation.

View Article and Find Full Text PDF

Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.

Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!