Artificial light-harvesting systems (LHSs) with a multi-step sequential energy transfer mechanism significantly enhance light energy utilization. Nonetheless, most of these systems exhibit an overall energy transfer efficiency below 80%. Moreover, due to challenges in molecularly aligning multiple donor/acceptor chromophores, systems featuring ≥3-step sequential energy transfer are rarely reported. Here, a series of artificial LHSs is introduced featuring up to 4-step energy transfer mechanism, constructed using a cyclic peptide-based supramolecular scaffold. These LHSs showed remarkably high energy transfer efficiencies (≥90%) and satisfactory fluorescence quantum yields (ranging from 17.6% to 58.4%). Furthermore, the structural robustness of the supramolecular scaffold enables a comprehensive study of these systems, elucidating the associated energy transfer pathways, and identifying additional energy transfer processes beyond the targeted sequential energy transfer. Overall, this comprehensive investigation not only enhances the understanding of these LHSs, but also underscores the versatility of cyclic peptide-based supramolecular scaffolds in advancing energy harvesting technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336932PMC
http://dx.doi.org/10.1002/advs.202404269DOI Listing

Publication Analysis

Top Keywords

energy transfer
36
sequential energy
16
transfer mechanism
12
energy
11
transfer
9
comprehensive study
8
artificial light-harvesting
8
light-harvesting systems
8
multi-step sequential
8
cyclic peptide-based
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!