Lignin has been extensively researched as a cathode active material in secondary batteries. In the present work, the energy storage potential of lignin naturally present in papers made of softwood chemi-thermomechanical pulp (CTMP) is explored. More specifically, effects from softwood CTMP fines on the electrochemical characteristics have been studied. Compared to pulp fibers, fines are higher in lignin content and have higher specific surface area. It was expected that this would be positive for the electrode performance; however, the result points to the opposite. The fines do not significantly contribute to a higher lignin specific capacity, and they deteriorate the cycling stability. Higher fines content was found to result in a higher oxidative activity as well as more abundant competing reactions. These competing reactions are believed to be linked to the cycle stability. Therefore, we hypothesize that the electrochemical stability of lignin can be better understood by studying differences between fines and fiber lignin. As the theoretical specific capacity of this material is about 20 times larger than obtained here, identification of the reasons for this capacity discrepancy is needed to realize the full potential of lignin-based paper batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632556 | PMC |
http://dx.doi.org/10.1002/cssc.202400222 | DOI Listing |
ACS Nano
January 2025
Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Organic anode materials have garnered attention for use in rechargeable Li-ion batteries (LIBs) owing to their lightweight, cost-effectiveness, and tunable properties. However, challenges such as high electrolyte solubility and limited conductivity, restrict their use in full-cell LIBs. Here, we report the use of highly crystalline Cl-substituted contorted hexabenzocoronene (Cl-cHBC) as an efficient organic anode for full-cell LIBs.
View Article and Find Full Text PDFAnal Chem
January 2025
Nanobiotechnology Department of the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitaetsplatz 1, Senftenberg 01968, Brandenburg, Germany.
Single nanoparticle (NP) cyclic voltarefractometry (CVR), realized as wide-field surface plasmon resonance microscopy (SPRM) in combination with potential cycling, has been proposed and applied to the in situ study of TiO NPs. Electrochemical activity of TiO is mainly observed outside the electrochemical stability window of water. Therefore, the response of individual anatase (a-TiO) and rutile (r-TiO) NPs adsorbed on a gold layer was studied in 0.
View Article and Find Full Text PDFHeliyon
December 2024
Ingeniería Electroquímica y Corrosión, Instituto Unversitario de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, C/Camino de Vera s/n, 46022, Valencia, Spain.
In this research work, four distinct WO electrodes were synthesized and coated with three different polymers, known as polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) in poly(4-styrenesulfonate) (PEDOT:PSS) and polyaniline (PANi), using electropolymerization techniques. The morphological features of the samples were thoroughly characterized through Field Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) analyses. Additionally, contact angle measurements and electrochemical characterizations were used to verify the performance of each electrode, aiding in the prediction of their suitability for energy storage applications in lithium-ion batteries.
View Article and Find Full Text PDFRSC Adv
January 2025
Centre for Research in Engineering Surface Technology (CREST), Technological University Dublin City Campus, Kevin Street Dublin 8 Ireland
The current work outlines the preparation of a TiO nanotube (NT) layer electrochemically formed on the surface of a clinically-relevant titanium alloy anodisation. This NT layer was subsequently modified alternating current electrodeposition to incorporate copper micro- and nanoparticles on top of and within the NTs. Physical characterisation of the NT layer and the copper-incorporated NTs was carried out through analysis of the surface morphology, elemental composition, crystallinity, and stability SEM, EDX, XRD, and ICP-OES, respectively.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry and Materials Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215000, P. R. China.
Spiro architectures with π-conjugation have improved thermal stability and stronger photosensitivity, making them potentially useful for organic optoelectronic devices. Our recent work has demonstrated the synthetic chemistry of a novel thiophene oligomer combining 2,7-dihydrooxepine and dispiro structure and derived it into A-D-A-type compounds. The optical spectroscopy and electrochemical characteristics were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!