Aim: To explore the use of histogram features on noninvasive arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) in differentiating isocitrate dehydrogenase mutant-type (IDH-mut) from isocitrate dehydrogenase wild-type (IDH-wt) gliomas, and lower-grade gliomas (LGGs) from glioblastomas.
Material And Methods: This retrospective study included 131 patients who underwent ASL MRI and anatomic MRI. Cerebral blood flow (CBF) maps were calculated, from which 10 histogram features describing the CBF distribution were extracted within the tumor region. Correlation analysis was performed to determine the correlations between histogram features as well as tumor grades and IDH genotypes. The independent t-test and Fisher's exact test were used to determine differences in the extracted histogram features, age at diagnosis, and sex in different glioma subtypes. Multivariate binary logistic regression analysis was performed, and diagnostic performances were evaluated with the receiver operating characteristic curves.
Results: CBF histogram features were significantly correlated with tumor grades and IDH genotypes. These features can effectively differentiate LGGs from glioblastomas, and IDH-mut from IDH-wt gliomas. The area under the receiving operating characteristic curve of the model calculated using combined CBF 30th percentile and age at diagnosis in differentiating LGGs from glioblastomas was 0.73. Integrating age at diagnosis and CBF 10th percentile could be more effective in differentiating IDH-mut from IDH-wt gliomas. Furthermore, the combined model had a better area under the receiving operating characteristic curve at 0.856 (sensitivity: 84.4%, specificity: 82.9%).
Conclusion: The histogram features on ASL were significantly correlated with tumor grade and IDH genotypes. Moreover, the use of these features could effectively differentiate glioma subtypes. The combined application of age at diagnosis and perfusion histogram features resulted in a more comprehensive identification of tumor subtypes. Therefore, ASL can be a noninvasive tool for the pre-surgical evaluation of gliomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5137/1019-5149.JTN.42484-22.3 | DOI Listing |
Neurosurg Rev
January 2025
Department of Radiology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
To investigate the value of preoperative MRI features and ADC histogram analysis for evaluating tumor-infiltrating CD8+ T cells in meningiomas. In this single-center cross-sectional study, we conducted a retrospective analysis of clinical, imaging, and pathological data from 84 patients with meningioma and performed immunohistochemical staining to quantitatively evaluate CD8+ T cells. Using X-Tile software, we divided the patients into high-and low-CD8+ T cells groups based on cut-off values.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Economics, Kardan University, Kabul, Afghanistan.
The Internet of Things (IoT) has recently attracted substantial interest because of its diverse applications. In the agriculture sector, automated methods for detecting plant diseases offer numerous advantages over traditional methods. In the current study, a new model is developed to categorize plant diseases within an IoT network.
View Article and Find Full Text PDFBackground: Alzheimer's Disease (AD) accounts for more than half of dementia cases and is a leading cause of death in the United States among elderly population. Early risk prediction is crucial to ensure effective and timely intervention plans. Deep learning-based survival analysis based on cross-sectional neuroimaging data has shown promising results in predicting the future progression of the dementia onset at an early stage.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Purpose: We used knowledge discovery from radiomics of T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (T1C) for assessing relapse risk in patients with high-grade meningiomas (HGMs).
Methods: 279 features were extracted from each ROI including 9 histogram features, 220 Gy-level co-occurrence matrix features, 20 Gy-level run-length matrix features, 5 auto-regressive model features, 20 wavelets transform features and 5 absolute gradient statistics features. The datasets were randomly divided into two groups, the training set (~ 70%) and the test set (~ 30%).
Curr Med Imaging
January 2025
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan611731, China.
Background And Objective: Lung cancer remains a leading cause of cancer-related mortality worldwide, necessitating early and accurate detection methods. Our study aims to enhance lung cancer detection by integrating VGGNet-16 form of Convolutional Neural Networks (CNNs) and Support Vector Machines (SVM) into a hybrid model (SVMVGGNet-16), leveraging the strengths of both models for high accuracy and reliability in classifying lung cancer types in different 4 classes such as adenocarcinoma (ADC), large cell carcinoma (LCC), Normal, and squamous cell carcinoma (SCC).
Methods: Using the LIDC-IDRI dataset, we pre-processed images with a median filter and histogram equalization, segmented lung tumors through thresholding and edge detection, and extracted geometric features such as area, perimeter, eccentricity, compactness, and circularity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!