Experimental and numerical studies were performed on the vibrational energy relaxation in shock-heated CO/N2/Ar mixtures. A laser absorption technique was applied to the time-dependent rovibrational temperature time-history measurements. The vibrational relaxation data of reflected-shock-heated CO were summarized at 1720-3230 K. In shock-tube experiments, the rotational temperature of CO quickly reached equilibrium, whereas a relaxation process was found in the time-dependent vibrational temperature. For the mixture with 1.0% CO and 10.0% N2, the vibrational excitation caused a decrease in the macroscopic thermodynamic temperature of the test gas. In the simulations, the state-to-state (StS) approach was employed, where the vibrational energy levels of CO and N2 are treated as pseudo-species. The vibrational state-specific inelastic rate coefficients of N2-Ar collisions were calculated using the mixed quantum-classical method based on a newly developed three-dimensional potential energy surface. The StS predictions agreed well with the measurements, whereas deviations were found between the Schwartz-Slawsky-Herzfeld formula predictions and the measurements. The Millikan-White vibrational relaxation data of the N2-Ar system were found to have the most significant impact on the model predictions via sensitivity analysis. The vibrational relaxation data of the N2-Ar system were then modified according to the experimental data and StS results, providing an indirect way to optimize the vibrational relaxation data of a specific system. Moreover, the vibrational distribution functions of CO and N2 and the effects of the vibration-vibration-translation energy transfer path on the thermal nonequilibrium behaviors were highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0212823 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!